Сои тяжелых металлов в пищевых продуктах. Тяжелые металлы. Что такое тяжелые металлы

Изотопы тяжелых металлов оседают на внутренних органах, что может стать причиной многих заболеваний (в частности, сердечно-сосудистых, недугов нервной системы, почек, рака, острого и хронического отравления). Как натуральным образом удалить тяжелые металлы из организма? Просто нужно правильно составить рацион. Вот продукты, которые обязательно должны быть приняты во внимание, если стоит такая задача.

Продукты, содержащие пектин

Пектины абсорбируют на поверхности соли тяжелых металлов. Они находятся в овощах, фруктах, ягодах. Помимо прочего, свекла дополнительно содержит флавоноиды, которые заменяют тяжелые металлы инертными соединениями. А картофель в мундире, содержащий крахмал, поглощает токсины из организма, удаляя их из организма естественным путем. Тяжелые металлы из нашего тела также убирают морковь, тыква, баклажаны, редис и помидоры.

Яблоки, цитрусовые, айва, груши, виноград, абрикосы – эти растительные продукты могут помочь устранению токсичных веществ из организма. Ягоды рябины, клюквы, малины, голубики связывают тяжелые металлы в не растворимые в воде и жире соединения, что облегчает их выведение из организма. Употребление сырых фруктов помогает очистить организм от накопившихся шлаков, но можно использовать их и в виде мармелада домашнего приготовления (только не очень сладкого).

Чай из ромашки, календулы, облепихи, шиповника

Это растения, которые помогают защищать клетки от проникновения тяжелых металлов и способствуют их выведению. Масла шиповника и облепихи очень полезны в случае отравления такими субстанциями.

Щавель, шпинат, салат

Зеленые листовые овощи помогают избавиться от радиоактивных изотопов цезия (этот элемент накапливается, в первую очередь, в мышцах и костях).

Можжевельник, семена кунжута и лопух, корень лимонной травы

Такие растения содержат активные вещества, которые нейтрализуют радионуклиды. При постоянном воздействии изотопов радиоактивных металлов рекомендуют также принимать до 40 капель настойки из аралии, родиолы розовой, женьшеня.

Кориандр

Употребление чая, настоянного на кориандре посевном, удаляет из организма ртуть в течение 2 месяцев. Достаточно каждый день 4 столовые ложки измельченного кориандра заваривать в литре кипящей воды (сосуд должен быть не металлическим) и выпивать настой через 20 минут.

Рис

Проведение очищающих процедур на базе риса особенно рекомендуется людям, работающим во вредных условиях. Столовую ложку крупы нужно вечером замочить в воде, а утром сварить без соли и съесть. Таким образом приготовленный рис удаляет из организма токсические соли металлов.

Овес

Отвар овса тоже защищает тело от воздействия солей тяжелых металлов. Можно просто залить стакан зерна 2 литрами воды и варить на маленьком огне в течение 40 минут. Таким образом приготовленный напиток следует пить по полстакана 4 раза в день. Благодаря этому организм очистится натуральным путем, в том числе от кадмия, который присутствует в табачном дыме.

Профилактика

Организм способен без сторонней помощи удалять накопившиеся токсины и отложения. Тем не менее, работа и жизнь в условиях, вредных для здоровья, или нездоровый образ жизни влияют на накопление токсичных веществ, которые вызывают разные заболевания. Поэтому следует заботиться о профилактике — быть осторожными с качеством и происхождением потребляемой пищи, а в случае необходимости обращаться к врачам с просьбой назначить лекарства, которые помогут очистить организм от тяжелых металлов.

Многочисленные непищевые вещества, токсичные для организма, поступают различными путями в пищевые продукты и, соответственно, в организм человека. К данным веществам относятся: гербициды, пестициды, металлоорганические соединения, антибиотики, применяемые в животноводстве, миотоксины, гормоноподобные вещества, используемые для стимуляции роста сельскохозяйственных животных. Полициклические соединения, многие из которых обладают мутагенной и канцерогенной активностью, другие соединения могут кумулировать, попадая в организм человека через цепи питания.

В процессе приготовления пищи (мариновании, варке жарке, копчении) происходит ее загрязнение тяжелыми металлами, вследствие контакта сырья при термической обработке с посудой и аппаратурой создаются условия проникновения в пищу многих токсикантов и тяжелых металлов.

Цепи питания являются одним из основных путей поступления вредных веществ в организм человека (до 70-80%). Эти цепи берут начало от сельскохозяйственных угодий и оканчиваются человеком, который, являясь конечным звеном, может получать продукты с концентрацией токсикантов в 10-1000 раз более высокой, чем в почвах.

Ухудшение экологической обстановки в мире и связанный с этим высокий уровень загрязненности продуктов питания радионуклидами, токсичными химическими соединениями, биологическими агентами и микроорганизмами способствуют нарастанию негативных тенденций в состоянии здоровья. При консервировании продуктов основным источником загрязнения свинцом являются жестяные банки, которые используются для упаковки 10 — 15% пищевых изделий, при этом свинец попадает в продукты из свинцового припоя в швах банок. Показано, что около 20% свинца в рационе людей (кроме детей до 1 года) поступает из консервированной продукции, причем 13 — 14% из припоя, а остальные 6 — 7% — из самого пищевого продукта. В то же время необходимо отметить, что с внедрением новых технологий пайки и закатки банок содержание свинца в консервированной продукции снижается.

Все вредные вещества пищи можно разделить на 2 группы: первая группа — это собственно природные компоненты пищевых продуктов, способные при обычном или избыточном потреблении вызывать неблагоприятное воздействие на организм человека и вторая группа — это вещества, не свойственные продуктам питания, которые попадают в пищу из внешней среды. Наибольшую опасность для здоровья человека представляют загрязнители (контаминанты) пищевых продуктов, не свойственные пищевым продуктам, а попадающие из окружающей среды. Истинные загрязнители пищевых продуктов разделяют на вещества природного (биологического) происхождения и вещества химического (антропогенного) происхождения. Загрязнение продовольственного сырья и пищевых продуктов чужеродными веществами напрямую зависит от степени загрязнения окружающей среды. К приоритетным загрязнителям пищевых продуктов антропогенного происхождения относятся токсичные (тяжелые) металлы, радионуклеиды, пестициды и продукты их метаболической деградации, нитраты, нитриты и N-нитрозоамины, полициклические ароматические углеводороды(бензпирен), полихлорированные дифенилы, диоксины, стимуляторы роста сельскохозяйственных животных (гормоны, антибиотики). Реальную опасность представляют природные контаминанты биологического происхождения — бактериальные токсины, токсичные метаболиты микроскопических грибов (микотоксины), некоторые токсины морепродуктов.

Тяжелые металлы относятся к приоритетным загрязняющим веществам, наблюдения за которыми обязательны во всех средах.

Термин тяжелые металлы, характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы. В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк).

С промышленными и коммунальными стоками, в результате атмосферных выпадений происходит поступление тяжелых металлов и в природные воды]. Помимо непосредственного загрязнения источников питьевого водоснабжения большую опасность представляет загрязнение гидробионтов, которых человек употребляет в пищу.

Основным резервуаром, где откладываются тяжелые металлы, является почва. Почва накапливает многолетние поступления тяжелых металлов, попадающие в нее из атмосферы в составе газообразных выделений, дымов и техногенной пыли; в виде отходов промышленности, сточных вод, бытового мусора, минеральных удобрений.

Немаловажным источником повышенных микроэлементных поступлений в организм человека и животных является пища, выращенная на загрязненных почвах. Специфичность тяжелых металлов заключается в том, что по степени насыщения ими тканей растений их основные органы располагаются так

корень > стебель, листья > семена > плоды.

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 металлов периодической системы Д.И. Менделеева с атомной массой свыше 50 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов. По классификации Н.Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см 3 . Таким образом, к тяжелым металлам относятся Pb, Cu, Zn, Ni, Cd, Co, Sb, Sn, Bi, Hg.

Формально определению тяжелые металлы соответствует большое количество элементов.

Токсичные металлы, попавшие в организм, распределяются в нем неравномерно. Первый удар принимают на себя основные органы выделения (печень, почки, легкие, кожа). В частности, попав в печень, они могут претерпевать различные изменения, даже с благоприятным для организма исходом, что способствуют их обезвреживанию и выведению через почки и кишечник. Если эти механизмы уже не срабатывают, то происходит накопление тяжелых металлов в организме человека

До 90 % общего содержания ртути в организме скапливается в почках. У людей, связанных с ртутью профессионально, обнаружены ее повышенное содержание в веществе головного мозга, печени, щитовидной железе и гипофизе. Свинец накапливается в костях, его концентрация здесь может в десятки и сотни раз превышать концентрацию в других органах. Кадмий откладывается в почках, печени, костях; медь — в печени. Мышьяк и ванадий накапливаются в волосах и ногтях. Олово — в тканях кишечника; цинк — в поджелудочной железе. Сурьма близка по своим свойствам мышьяку и оказывает на организм сходное действие.

Отравление свинцом (сатурнизм) – представляет собой пример наиболее частого заболевания, обусловленного воздействием окружающей среды. В большинстве случаев речь идет о поглощении малых доз и накопление их в организме, пока его концентрация не достигнет критического уровня необходимого для доксического проявления.

Кроме токсического действия тяжелые металлы обладают канцерогенным действием. По данным Международного агенства по изучению рака IARC для человека канцерогенными являются соединения мышьяка (рак легких и кожи), хрома (рак легких и верхних дыхательных путей), никеля (Ni) (группа 1) и кадмия (рак предстательной железы) (группа 2Б). Канцерогенными для животных и потенциально опасными для человека признаны соединения свинца (Pb), кобальта (Co), железа (Fe), марганца (Mn) и цинка (Zn). Данные о канцерогенном влиянии многих химических элементов в настоящее время изучаются и дополняются.

В конечном итоге тяжелые металлы понижают общую сопротивляемость организма, его защитно-приспособительные возможности, ослабляют иммунную систему, нарушают биохимический баланс в организме. Медиками ведется поиск натуральных протекторов, способных ослабить или нейтрализовать вредное воздействие. За экологами же остаются задачи объективной оценки и прогноза степени загрязненности нашей среды обитания, а также большая работа по ограничению их поступлений во внешнюю и внутреннюю среду человека.

Медиками-гигиенистами определены ПДК тяжелых металлов, остаточных количеств пестицидов, радионуклидов в почвах по показателям их вредности. Нормирование подразделяют на транслокационное (переход нормируемого элемента в растение), миграционное воздушное (переход в воздух), миграционное водное (переход в воду) и общесанитарное, гигиеническое (влияние на самоочищающую способность почв и почвенный микробиоценоз).

Таблица – ПДК тяжелых металлов и мышьяка в продовольственном сырье и пищевых продуктах, мг/кг (СанПиН 42-123-4089-86)

Элемент

хлеб

овощи

фрукты

Ртуть

0,02

0,02

0,02

Кадмий

0,03

0,03

Свинец

Продолжение табл.

Пищевые продукты растительного происхождения

Мышьяк

Сурьма

Медь

10,0

Цинк

50,0

10,0

10,0

Никель

Хром

Олово

200,0

200,0

В результате действия многочисленных факторов пища становится источником и носителем большого числа потенциально опасных и токсичных веществ химической и биологической природы. Положение дел в этой области в России, особенно за последние пять лет, ухудшилось в связи с экономическим кризисом, демонополизацией пищевой промышленности, увеличением объемов поставок продовольствия из-за рубежа, ослаблением контроля за производством и реализацией продуктов питания, что вызывает серьезную тревогу. До 10% проб пищевых продуктов в целом по России содержат тяжелые металлы: свинец, кадмий, медь, цинк и другие, в том числе до 5% в концентрациях, превышающих предельно допустимые.

2. ИЗМЕНЕНИЕ КЛИМАТА В РЕЗУЛЬТАТЕ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА

Исследования показывают, что климат Земли никогда не был статичным. Он является динамичным, подверженным колебаниям во всех временных масштабах, начиная от десятилетий до тысяч — миллионов лет. К числу наиболее заметных колебаний относится цикл более порядка 100 000 лет — ледниковые периоды, когда климат Земли был в основном холоднее по сравнению с настоящим, после чего следовали более теплые межледниковые периоды. Эти циклы определялись причинами естественного характера.
С начала промышленной революции изменение климата происходит ускоренными темпами в результате деятельности человека. Причина этого изменения, которая накладывается на естественную изменчивость климата, приписывается прямым или косвенным образом деятельности человека, которая изменяет состав атмосферы.

Современная деятельность человека, так же как и его деятельность
в прошлом, существенно изменила природную среду на большей части нашей планеты, эти изменения до недавнего времени были только суммой многих локальных воздействий на природные процессы. Они приобрели планетарный характер не в результате изменения человеком природных процессов глобального масштаба, а потому, что локальные воздействия распространились на большие пространства. Иначе говоря, изменение фауны в Европе и Азии не влияло на фауну Америки, регулирование стока американских рек не изменило режима стока африканских рек и так далее. Только в самое последнее время началось воздействие человека на глобальные природные процессы, изменение которых может оказать влияние на природные условия всей планеты.

Принимая во внимание тенденции развития хозяйственной деятельности человека в современную эпоху, недавно было высказано предложение, что, дальнейшее развитие этой деятельности может привести к значительному изменению окружающей среды, в результате которого произойдет общий
кризис экономики и резко сократится численность населения.
К числу крупных проблем относится вопрос о возможности изменения под влиянием хозяйственной деятельности глобального климата нашей
планеты. Особое значение этого вопроса заключается в том, что такое изменение может оказать существенное влияние на хозяйственную деятельность человека раньше всех других глобальных экологических нарушений.

Изменение климата планеты в результате деятельности человека — проблема не только чрезвычайной важности, но и чрезвычайной сложности. Основополагающая теория о том, как человеческое общество способствует потеплению окружающей среды сжиганием ископаемого топлива, появилась более ста лет назад. Теоретическим моделям окружающей среды, однако, всего несколько десятков лет, и они по-прежнему остаются несовершенными.
В то же время перепады температуры, неожиданное выпадение осадков и другие подобные явления свойственны самому климату как таковому, вне зависимости от деятельности человека. Поэтому так страшно отделение человеческого фактора от природных факторов. Тем более поразительно, что мировому сообществу удалось выработать согласованный подход к решению данной проблемы. Дело в том, что не только научная сторона этого вопроса является сложной и неясной, но и интересы разных стран отличаются друг от друга.

Так глобальное потепление может хуже всего сказаться на тропических странах, но принести определенную пользу странам с более холодным климатом, таким как Канада и Россия, например. Прибрежные страны могут пострадать от повышения уровня воды в океане, тогда как это не окажет практически никакого влияния на удаленные от моря регионы.

Понижение спроса на ископаемое топливо больно ударит по странам, живущим за счет добычи угля и нефти, в то время как производители других видов энергии, таких как гидроэлектроэнергия, только выиграют от этого. Короче говоря, изменение климата планеты — это вопрос, вызывающий столкновение различных интересов при отсутствии определенности относительно его причин.

При определенных условиях влияние хозяйственной деятельности
человека на климат может в сравнительно близком будущем привести к потеплению, сравнимому с потеплением первой половины 20 века, а затем намного превзойти это потепление.

Одной из причин изменения климата является использование разнообразных аэрозолей.

Аэрозоли — это мелкие частицы пыли, которые находятся во взвешенном состоянии в атмосфере. Они образуются главным образом в результате химических реакций между газообразными загрязнителями воздуха, поднятого на высоту песка или брызг морской воды, лесных пожаров, сельскохозяйственной и промышленной деятельности, а также автомобильных выхлопов. Аэрозоли образуют мутный слой тропосфере, самом низком слое до высоты 10 км атмосфере. Они могут также образоваться высоко атмосфере после вулканического извержения и даже в стратосфере на высоте порядка 20 км. В безоблачные дни небо становится из-за них не таким абсолютно синим, а скорее беловатым (особенно направлении Солнца). Лучше всего аэрозоли видны при восходе и заходе солнца, когда путь лучей атмосфере до поверхности Земли больше.

Аэрозоли являются высокоэффективными рассеивателями солнечного света, поскольку их величина составляет, как правило, несколько десятых долей микрона. Некоторые аэрозоли (такие, как сажа) поглощают также свет. Чем больше они поглощают, тем больше нагревается тропосфера и тем меньше солнечной радиации может достигнуть поверхности Земли. В результате этого аэрозоли могут понизить температуру приземного слоя атмосферы.

Большие количества аэрозолей могут привести, таким образом, к охлаждению климата, которое компенсирует в определенной степени эффект потепления в результате увеличения объема парниковых газов. Кроме того, аэрозоли обладают дополнительным косвенным эффектом охлаждения благодаря своей способности усиливать облачный покров. Продолжительность нахождения частиц пыли в атмосфере гораздо короче продолжительности существования парниковых газов, поскольку они могут исчезнуть в результате осадков в течение недели. Последствия воздействия аэрозолей также гораздо более локальны по сравнению с широко распространенным воздействием парниковых газов.

В связи с ростом мирового населения многократно возросла нагрузка на культивируемые участки суши. Интенсивное земледелие, выпас скота и истощение запасов подводных вод из-за их использования для ирригации привели к деградации почвы в нескольких районах. Альмерия (юг Испании)является одним из многочисленных примеров, когда земле угрожает опасность опустынивания. Изменения в землепользовании негативно воздействуют на климатические параметры региона, такие, как температура и влажность, которые, в свою очередь, оказывают воздействие на региональный и глобальный климат.

Со времени промышленной революции зеленые леса на всем земном шаре, в настоящее время находящиеся в основном в зоне тропических дождей, были вытеснены товарными и прочими культурами. Люди также изменяют окружающую среду в результате выращивания скота, которое повышает спрос на воду. Помимо выпаса скота на естественных пастбищах, люди существенно изменили частоту, интенсивность и объем выпаса в результате одомашнивания скота. Фактически, усилиям по сдерживанию опустынивания в сахельских регионах и в других местах мешают чрезмерный выпас скота и рубка деревьев для получения дров.

Урбанизация способствовала изменению климата. В начале нынешнего столетия жители городов составляли почти половину мирового населения. Согласно оценкам, город с населением в 1 млн человек производит ежедневно 25 000 тонн двуокиси углерода и 300 000 тонн сточных вод. Концентрация деятельности и выбросы являются достаточными для того, чтобы изменить местную атмосферную циркуляцию вокруг городов. Эти изменения являются столь значительными, что могут изменить циркуляцию на уровне региона, а это, в свою очередь, сказывается на глобальной циркуляции. Если подобное воздействие будет продолжаться, то ощутимым станет долгосрочное воздействие на климат.

В течение последних десятилетий появляется все больше свидетельств изменения климата, основанных на изменениях физических характеристик атмосферы, а также фауны и флоры в различных частях мира.

Одним из наиболее убедительных аргументов в отношении изменения климата является тот факт, что столь большое количество независимо проведенных наблюдений подтверждает, что за последний век общее повышение температуры поверхности составило 0, 6 0 С. Со времени промышленной революции ускоренными темпами продолжалось увеличение содержания в атмосфере двуокиси углерода.

Возрастают как максимальные, так и минимальные среднесуточные температуры, однако минимальные температуры возрастают более быстрыми темпами по сравнению с максимальными. Измерения температуры на поверхности Земли, а также измерения при помощи радиозондов и спутников показывают, что тропосфера и поверхность Земли стали более теплыми и что происходит охлаждение стратосферы.

Все большее количество свидетельств на основе палеоклиматических данных свидетельствует о вероятности того, что темпы и продолжительность потепления в ХХ веке являются более значительными по сравнению с любым другим временным периодом за последнюю тысячу лет. Девяностые годы ХХ века являются, вероятно, самым теплым десятилетием тысячелетия в северном полушарии. Самой высокой зарегистрированной температурой характеризовался 1998 г. , а 2001 г. был на втором месте.

Продолжалось увеличение объема ежегодных осадков над сушей в средних и высоких широтах северного полушария, за исключением Восточной Азии. Паводки наблюдались даже в тех местах, где дождь обычно является редким событием.

Облачность над континентальными регионами средних и высоких широт северного полушария увеличилась с начала ХХ века почти на 2 %. Уменьшение площади снежного покрова и континентального льда по-прежнему характеризуется позитивной связью с увеличением температуры поверхности земли. Уменьшается объем морского льда в северном полушарии, однако не очевидными являются сколь-либо существенные тенденции изменения морского льда в Антарктике.

В течение последних 45 -50 лет арктический морской лед стал тоньше почти на 40 %в период между окончанием лета и началом осени.

Показатель среднего глобального повышения уровня моря в течение ХХ века находится в пределах 1, 0 -2, 0 мм/г. Эти показатели роста больше соответствующих показателей XIX века, хотя столь давние данные являются весьма немногочисленными. Повышение уровня моря в ХХ веке превышает, вероятно, в десять раз среднюю величину этого повышения за последние 3 000 лет.

Развитие явления Эль-Ниньо/южное колебание (ЭНСО) было необычным с середины 70-х годов XX века по сравнению с предшествующими 100 годами. Наводнения и засухи, нередко сопровождаемые гибелью урожаев и лесными пожарами, стали более частыми, хотя размеры общей затронутой поверхности суши увеличились относительно незначительно.

Наблюдалось явное увеличение сильных и экстремальных осадочных явлений.

В течение ХХ века происходило относительно небольшое увеличение общего размера континентальных районов, которые подверглись суровым засухам или повышенной влажности, хотя в некоторых районах отмечались изменения. Убедительных свидетельств, указывающих на то, что характеристики тропических и внетропических штормов изменились, не существует.

Природные системы, такие, как ледники, коралловые рифы, атоллы, леса, увлажненные земли и т. д. , уязвимы для изменения климата. Некоторые эксперты оценивают, что более четверти коралловых рифов во всем мире разрушены в результате потепления морей. Они предупреждают, что если не будут приняты срочные меры, то большая часть из остающихся рифов погибнет через 20 лет. За последние два года в некоторых наиболее сильно пораженных районах, таких, как Мальдивские и Сейшельские о-ва в Индийском океане, по оценкам, обесцвечено до 90% коралловых рифов.

Открытие «озоновой дыры» над Антарктикой в середине 80-х годов привело к интенсивным научным исследованиям в области химии и переноса в стратосфере. Стратосферный озон составляет приблизительно 90 %всего озона в атмосфере, в то время как остающиеся 10 %находятся в тропосфере, в самом низком слое атмосферы, при этом толщина слоя составляет 10 км у полюсов и 16 км в тропиках.

Недавние изменения регионально климата, особенно повышение температуры, уже отразилось на многих физических и биологических системах. Параметрами этого является следующее:

    увеличение продолжительности вегетационных периодов в средних-высоких широтах;

    уменьшение популяций некоторых растений и животных;

    сокращение и перемещение границ нахождения растений и животных в направлении полюсов и более высоких широт;

    уменьшение площади снежного покрова и континентального льда, что явно связанно с увеличением температуры поверхности земли;

    более позднее образование льда и более ранний ледоход на реказ о озерах;

    таяние вечной мерзлоты;

    сокращение размеров ледников

    Таким образом, изменение климата, возможно, является первым реальным признаком глобального экологического кризиса, с которым столкнется человечество при стихийном развитии техники и экономики.
    Основной причиной этого кризиса на его первой стадии будет пе-
    распределение количества осадков, выпадающих в различных районах земного шара, при их заметном уменьшении во многих районах неустойчивого увлажнения. Поскольку в этих районах расположены важнейшие области производства зерновых культур, изменение режима осадков может существенно затруднить проблему повышения урожайности для обеспечения продовольствием быстро растущего населения земного шара. По этой причине вопрос о предотвращения нежелательных изменений глобального климата является одной из существенных экологических проблем современности.

    Для предотвращения неблагоприятных изменений климата, возникающих под влиянием хозяйственной деятельности человека, осуществляются
    различные мероприятия; наиболее широко ведется борьба с загрязнением атмосферного воздуха. В результате применения во многих развитых странах различных мер, включающих очистку воздуха, используемого промышленными предприятиями, транспортными средствами, отопительными устройствами и так далее, в последние годы достигнуто снижение уровня загрязнения воздуха в ряде городов. Однако во многих районах загрязнение воздуха усиливается, причем, имеется тенденция к росту глобального загрязнения атмосферы. Это указывает на большие трудности предотвращения роста количества антропогенного аэрозоля в атмосфере.

    Еще труднее были бы задачи (которые пока еще не ставились)
    предотвращения увеличения содержания углекислого газа в атмосфере и роста тепла, выделяемого при преобразованиях энергии, используемой человеком.

    Простых технических средств решения этих задач не существует, кроме ограничений потребления топлива и потребления большинства видов энергии, что ближайшие десятилетия несовместимо с дальнейшим техническим прогрессом.

    Таким образом, для сохранения существующих климатических условий в близком будущем окажется необходимым применение метода регулирования климата. Очевидно, что при наличии такого метода он мог быть использован также для предотвращения неблагоприятных для народного хозяйства естественных колебаний климата и в дальнейшем, соответствующем интересам человечества.

    Из других путей воздействия на климатические условия заслуживает внимание возможность изменения атмосферных движений большого масштаба. Во многих случаях атмосферные движения неустойчивы, в связи с чем возможны воздействия на них с затратой сравнительно небольшого количества энергии.

    Из различных источников путей воздействия на климат, по-
    видимому, наиболее доступен для современной техники метод, основанный на увеличении концентрации аэрозоля в нижней стратосфере. Осуществление этого воздействия на климат имеет целью предотвратить или ослабить изменения климата, которые могут возникнуть через несколько десятилетий под влиянием хозяйственной деятельности человека. Воздействия такого масштаба могут быть необходимы в 21 веке, когда в результате значительного роста производства энергии может существенно повысится температура нижних слоев атмосферы. Уменьшение прозрачности стратосферы в таких условиях может предотвратить нежелательные изменения климата.

    СПИСОК ЛИТЕРАТУРЫ

  1. Будыко М.И. Изменения климата.- Ленинград: Гидрометеоиз-
    дат, 1974. СОВРЕМЕННЫЕ ЭКОЛОГИЧЕСКИЕ КАТАСТРОФЫ ЭКОЛОГИЧЕСКИЕ ПОСЛЕДСТВИЯ ОТ МЕТАЛЛУРГИЧЕСКОЙ И ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ ПОНЯТИЕ «ЭКОЛОГИЧЕСКИЕ ОТНОШЕНИЯ» СОСТОЯНИЕ И ПРОБЛЕМЫ ПРИРОДНОЙ СРЕДЫ

В России насчитывается более 130 биогеохимических провинций, что накладывает свой отпечаток на элементный состав сельскохозяйственной продукции, получаемой в их пределах. Не меньшее воздействие на ее качество оказывает техногенное поступление химических элементов в окружающую среду. Допустимое количество тяжелых металлов, которое человек может потреблять с продуктами питания без риска заболевания, колеблется в зависимости от вида металла свинец - 3, кадмий - 0,4-0,5, ртуть - 0,3 мг в неделю. И хотя эти уровни условны, тем не менее, они служат основой для контроля содержания в продуктах питания. Поступившие в организм человека тяжелые металлы выводятся крайне медленно, они способны к накоплению главным образом в почках и печени.

Для предотвращения заболевания человека необходимо устранить его причины, среди которых могут быть и загрязненные тяжелыми металлами продукты питания, т.е. необходима экологически безопасная продукция.

В настоящее время в районах, где расположены крупные промышленные предприятия, а также интенсивного использования осадков сточных вод в сельскохозяйственном производстве в почвах накапливаются избыточные количества тяжелых металлов. Однако эти территории широко используются для производства продукции как растениеводческой, так и животноводческой.

Анализ овощеводческой продукции, продаваемой на рынках г. Серпухова (Московской обл.), показал, что в зеленных культурах, редисе, картофеле, свекле столовой и моркови содержание свинца и кадмия превышает их ПДК в 18-25 раз. Это является следствием того, что жители г. Серпухова при выращивании овощных культур и картофеля используют осадки коммунальных стоков города. Еще меньше предельно допустимое содержание ртути: не более 0,05 мг/кг.

Таблица 3 Верхняя пороговая концентрация тяжелых металлов в сухом веществе корма [Ковальский и др., 1971]

Во многих странах мира разработаны национальные нормативы допустимых остаточных количества (ДОК). Например, в Германии ДОК кадмия в овощах в 3 раза выше, чем в России. В то же время ДОК кадмия в овощах, принятое в России и равное 0,03 мг/кг сырой массы, достигается при техногенном загрязнении почв очень быстро. Так, содержание ртути в российском сахаре меняется в 3 раза, тогда как в рыбе в 1300 раз. Колебания содержания свинца составляет 2-165 раз, кадмия - 2-450 раз, хрома - 3-16 раз, меди - 3_121 раз, цинка - 3-30 раз и никеля - 2-30 раз. Столь широкий размах изменений содержания определяется видом самой продукции, условиями ее производства (технология процесса получения продукции), внешними факторами состояния окружающей среды, степенью чистоты исходных компонентов для ее производства.

Таблица 4 Допустимые остаточные количества тяжелых металлов в пищевых продуктах, мг/кг [Найчитейн и др., 1987]

Незначительные колебания содержания тяжелых металлов характерно для целого ряда продуктов: сахар, пиво и орехи. Малые колебания содержания тяжелых металлов в орехах. Высокое содержание свинца, кадмия, хрома и никеля в продукции связано в первую очередь с ее производством вблизи промышленных предприятий и автомобильных дорог.

Допустимое количество тяжелых металлов, которое человек может потреблять с продуктами питания без риска заболевания, колеблется в зависимости от вида металла свинец - 3, кадмий - 0,4-0,5, ртуть - 0,3 мг в неделю. И хотя эти уровни условны, тем не менее, они служат основой для контроля содержания в продуктах питания.

Наибольшей аккумуляцией элементов отличались столовая свекла и картофель. Сорта картофеля имеют существенные различия в аккумуляции кадмия и в особенности свинца. Минимальным накоплением кадмия в клубнях характеризуются сорта: Брянский ранний и Броницкий, а максимальным - Невский-1. Минимальное количество свинца накапливали сорта: Брянский ранний, Броницкий, Резерв-2, Пригожий, Институтский, максимальное - Скайдра, Невский-1, Посвит-2, Свитанок-3.

Среди продуктов растительного происхождения, содержащих кобальт следует выделить: злаки, бобовые, картофель, капусту, перец красный, петрушку, редьку, салат, свеклу, зеленый лук, землянику, ежевику, малину, смородину, фундук (лесной орех), фруктовые соки (виноградный, земляничный, вишневый, мандариновый и апельсиновый).

Больше всего меди содержится в растениях лука, петрушки, редьки и кабачков. Значительно меньше содержится меди в продукции растений кукурузы и картофеля. Высоким содержанием меди отличаются соки: томатный; абрикосовый и морковный.

В значительных количествах цинк находится в следующих продуктах фасоли, горохе, луке репчатом и зеленом, огурцах, чесноке, кабачках. Немного меньше его в картофеле, моркови, петрушке, редьке, томатах укропе, землянике, крыжовнике, малине. Очень много цинка в злаках, белых грибах и больше всего в семенах конопли. В незначительных количествах он содержится в баклажанах, арбузе, перце красном, хрене, шпинате, абрикосе, сливе, клюкве, черешне, печени, почках, говядине, сырых яйцах. При хранении пищевых продуктов в цинковой посуде могут накапливаться ядовитые соединения цинка - хлориды, сульфаты.

К растениям, которые накапливают большие количества марганца (т.е. марганофиллы), относятся: горох, фасоль, укроп, петрушка, свекла, хрен, шпинат, щавель, морковь, лук, чеснок, грибы, виноград, земляника, клюква, крыжовник, малина, смородина, яблони, груши. Овощные и фруктовые соки также отличаются по содержанию тяжелых металлов.

Проблема нитратов в продуктах питания

Овощи нам необходимы, без них не обойтись. Но попадающие на наш стол капуста, картошка, редис или огурцы, как правило, содержат азотнокислые соли - нитраты. В желудочно-кишечном тракте они превращаются в соли азотистой кислоты - нитриты, которые отравляют организм. Это выражается в нарушении поведенческих реакций, снижении работоспособности, головокружении, потере сознания. Если же доза очень велика - исход может быть и летальным.

Человек относительно легко переносит дозу в 150-200 миллиграммов нитратов в день, 500 - предельно допустимая доза, 600 - токсичная для взрослых, а для грудного ребенка - 10 миллиграммов. Но волей-неволей мы потребляем в день гораздо больше этих солей, так как овощи способны накапливать их в очень широких пределах.

В естественных условиях, например, в лесу, содержание нитратов в растениях небольшое - они почти полностью переходят в органические соединения.

Еще в 1984 году было установлено предельно допустимое содержание азота нитратов в миллиграммах на килограмм сырой массы овощей. Так, в капусте белокочанной содержание этих солей не должно превышать 300, в томатах - 60, в огурцах - 150, в столовой свекле - 1400, в дынях и арбузах - 45 миллиграммов на килограмм. По данным санэпидстанции, эти нормы постоянно превышаются.

В пюре моркови содержание нитратов доходило до 600 мг/кг, а тыквенном - до 1000 (при предельно допустимых 15).

Зафиксировано, что содержание нитратов различно не только в отдельных культурах, но и в сортах. Огурцы сорта Апрельский при прочих равных условиях накапливают нитратов в 3 раза больше, чем сорт Московский тепличный. Морковь Нантская содержит в 2 раза больше неорганического азота, чем Шантанэ. У зеленных овощей наибольшее количество нитратов находится в стеблях и черешках листьев, поскольку именно сюда идет основной транспорт солей азота. Установлено, что неорганический азот практически отсутствует в зерне злаковых культур и в основном сосредоточен в вегетативных органах (лист, стебель).

У столовой свеклы, моркови, редиса огурца необходимо отрезать верхнюю и нижнюю части корнеплода. Содержание нитратов в картофеле - 10_150, огурцы - 20-100, свекла - 10-500 мг/кг. Зеленные овощи накапливают большое количество нитратов. У них наибольшее количество нитратов находится в стеблях и черешках листьев, поскольку именно сюда идет основной транспорт солей азота. Ревень до 500 мг/кг, петрушка - 430, редька - 400, кресс - салат от 300 до 1100 мг/кг, салат от 100-600 мг/кг, в дынях и арбузах 110-130 мг/кг.

Существенное влияние на количество нитратов в продуктах питания оказывает технология их приготовления. При грамотной чистке, вымачивании и варке может теряться от 20 до 40 % вредных солей. Например, если картофель замочить на сутки в 1-процентном растворе поваренной соли или аскорбиновой кислоты, то уровень нитратов в клубнях снизится почти на 90 %.

Во многих странах Чехии, Германии, США, Франции и др. приняты законы, ограничивающие уровень нитратов и нитритов не только в овощах, но и в консервах, мясных и молочных изделиях.

В Голландии, Бельгии, и других странах овощи в магазины поступают только с паспортом - в нем точное содержание нитратов. Если покупатель желает убедиться в правильности цифр, к его услугам специальные индикаторные бумажки. Выжав на них каплю сока из овощей, по цвету можно убедиться в правильности цифр.

Различные марки пива содержат неодинаковое количество тяжелых металлов. Их содержание, кроме кадмия, находится в пределах допустимого уровня. Содержание же кадмия превышает ПДК: в 2 раза в пиве марки "Балтика № 1", в 3 раза - марки "Holsten, Bavaria" и в 4 раза - марки "Московское". Пиво марки "Московское" содержит более высокое количество кобальта, никеля и хрома.

Наиболее существенное изменение содержания ртути в рыбе и в рыбных продуктах, что связано с загрязнением Мирового океана этим элементом. То же самое наблюдается и в отношении свинца, кадмия и хрома.

Аккумуляция тяжелых металлов тканями рыб создает угрозу отравления человека через рыбные продукты, употребляемые в пищу. Прослеживается неравномерное накопление тяжелых металлов как различными органами одного вида рыб, так и особями разных видов, относящихся к различным уровням трофической цепи.

В печени густеры содержание меди превышало ДОК в 1,3 раза, а в печени леща, чехони и белоглазки - в 3,1; 5,5; 1,3 раза, соответственно. Икра густеры и белоглазки также содержала значительные количества меди. Наибольшее количество цинка обнаружено в икре густеры, плотвы и белоглазки (превышение ДОК в 2-3,5 раза). В летний период отмечается повышение содержание в рыбе - тяжелых металлов. Содержание ртути в рыбе природных водоемов колеблется в пределах 10-27 мг/кг. Высокое количество ртути характерно для хищных пород рыб: окунь, щука, судак. ПДК ртути для рыб равна - 0,5 мг/кг. В настоящее время более 80 % рыб содержат ртути от 0,5 до 2 мг/кг и 20 % - от 0,1 до 0,5 мг/кг.

Наибольшее количество свинца содержится в табаке сигарет "Прима" и "Пегас" а минимальное - в табаке "Marlboro". Сигареты "Пегас" содержат наибольшее количество кадмия, хрома и кобальта и минимальное количество марганца. Минимальное содержание кадмия и хрома характерно для табака сигарет "Ява золотая". Наименьшее количество кобальта находится в табаке сигарет "Salem". Наименьшее содержание марганца характерно для табака сигарет "Пегас", а максимальное - для "Marlboro".

Курение как постоянно действующий фактор вносит свою лепту в общее загрязнение организма чужеродными веществами, которые играют важную экологическую роль в развитии патологии сердечно-сосудистой системы человека.

Табак потребляет и аккумулирует в себе значительные количества кадмия и ртути. Содержание ртути в сухих листьях табака на порядок, а кадмия на три порядка выше средних значений их величины для биомассы наземной растительности. Поэтому каждая затяжка дымом содержит помимо других веществ (никотин, нитраты, окись углерода), также и кадмий. В одной сигарете его сдержится от 1,2 до 2,5 мкг и до 0,25 мкг свинца. Из этого количества в легкие попадает 0,1-0,2 мкг кадмия, а остальное рассеивается вместе с дымом и пеплом.

Мировое производстве табака составляет 5,7 млн. т в год. Одна сигарета - это 1 г табака. При выкуривании всех сигарет мира выделяется от 5,7 до 11,4 т кадмия, т.е. такое же количество, как при 3-4 средней силы вулканических извержениях.

Работа добавлена на сайт сайт: 2016-03-13

Заказать написание уникльной работы

;font-family:"Times New Roman"">МИНОБРНАУКИ РОССИИ

;font-family:"Times New Roman"">Федеральное государственное бюджетное образовательное учреждение

;font-family:"Times New Roman"">высшего профессионального образования

;font-family:"Times New Roman"">«Тверской государственный технический университет»

;font-family:"Times New Roman"">(ТвГТУ)

;font-family:"Times New Roman"">Кафедра Биотехнологии и химии

;font-family:"Times New Roman"">Курсовая работа

по теме: «Методы определения содержания тяжелых металлов в различных пищевых продуктах»

;font-family:"Times New Roman"">Выполнил: студент 3курса

;font-family:"Times New Roman"">дневного отделения

;font-family:"Times New Roman"">факультета ХТФ

;font-family:"Times New Roman"">группы СМ – 1101

;font-family:"Times New Roman"">Баурина А.А.

Принял: доцент

кафедры БТ и Х

Ожимкова Е. В.

;font-family:"Times New Roman"">Тверь 2013

;font-family:"Times New Roman"">СОДЕРЖАНИЕ

;font-family:"Times New Roman"">ОПРЕДЕЛЕНИЯ 4

;font-family:"Times New Roman"">ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ 6

;font-family:"Times New Roman"">ВВЕДЕНИЕ 7

  1. ;font-family:"Times New Roman";color:#000000">Теоретические аспекты загрязнения пищевых продуктов 9
  2. ;font-family:"Times New Roman"">Источники загрязнения пищевых продуктов тяжёлыми металлами 9
  3. ;font-family:"Times New Roman"">Загрязнение химическими элементами продовольственного сырья 13

;font-family:"Times New Roman"">1.2.1 Ртуть 14

;font-family:"Times New Roman"">1.2.2 Свинец 15

;font-family:"Times New Roman"">1.2.3 Кадмий 17

;font-family:"Times New Roman"">1.2.4 Алюминий 18

;font-family:"Times New Roman"">1.2.5 Мышьяк 19

;font-family:"Times New Roman"">1.2.6 Медь 20

;font-family:"Times New Roman"">1.2.7 Цинк 21

;font-family:"Times New Roman"">1.2.8 Олово 22

;font-family:"Times New Roman"">1.2.9 Железо 24

  1. ;font-family:"Times New Roman"">Классификация и методы определения тяжелых металлов в пищевых продуктах 26
  2. ;font-family:"Times New Roman"">Понятие и методы качественного и количественного анализа 26
  3. ;font-family:"Times New Roman"">Качественный анализ 26
  4. ;font-family:"Times New Roman"">Количественный анализ 29
  5. ;font-family:"Times New Roman"">Классификация и характеристика методов исследования пищевых продуктов 33
  6. ;font-family:"Times New Roman"">Физические и физико-химические методы 33
  7. ;font-family:"Times New Roman"">Химические и биохимические методы 37
  8. ;font-family:"Times New Roman"">Микробиологические методы 38
  9. ;font-family:"Times New Roman"">Физиологические методы 38
  10. ;font-family:"Times New Roman"">Технологические методы 39
  11. ;font-family:"Times New Roman"">Методы определения тяжёлых металлов в пищевых продуктах 40

;font-family:"Times New Roman"">4.1 Методы определения мышьяка 40

;font-family:"Times New Roman"">4.2 Методы определения кадмия 41

;font-family:"Times New Roman"">4.3 Методы определения свинца 45

;font-family:"Times New Roman"">4.4 Методы определения ртути 45

;font-family:"Times New Roman"">4.5 Методы определения цинка 48

;font-family:"Times New Roman"">4.6 Методы определения железа 49

;font-family:"Times New Roman"">ЗАКЛЮЧЕНИЕ 52

;font-family:"Times New Roman"">СПИСОК ЛИТЕРАТУРЫ 54

;font-family:"Times New Roman"">
ОПРЕДЕЛЕНИЯ

;font-family:"Times New Roman"">В данной курсовой работе применяются следующие термины с соответствующими определениями:

;font-family:"Times New Roman"">Антагония – это ;font-family:"Times New Roman";background:#ffffff">противостояние, непримиримое отвержение.

;font-family:"Times New Roman"">Возгон – это ;font-family:"Times New Roman";color:#000000;background:#ffffff">оксиды легко возгоняемых металлов, образующиеся при высоких температурах в некоторых металлургических процессах. ;font-family:"Arial";color:#000000;background:#ffffff">

;font-family:"Times New Roman"">Гальванизация – это метод покрытия одного металла каким-либо другим путем электролиза.

;font-family:"Times New Roman"">Гипотония – это ;font-family:"Times New Roman";color:#000000;background:#ffffff">пониженный тонус сосудов или мышц.

;font-family:"Times New Roman"">Инактивация – это ;font-family:"Times New Roman";color:#000000;background:#ffffff">частичная или полная потеря биологически активным веществом или агентом своей активности.

;font-family:"Times New Roman"">Инсектициды – это ;font-family:"Times New Roman";color:#000000;background:#ffffff">химические препараты для уничтожения вредных насекомых.

;font-family:"Times New Roman"">Интоксикация – это ;font-family:"Times New Roman";color:#000000;background:#ffffff">отравление организма образовавшимися в нём самом или поступившими извне токсическими веществами.

;font-family:"Times New Roman"">Кофактор – это ;font-family:"Arial";color:#000000;background:#ffffff"> ;font-family:"Times New Roman";color:#000000;background:#ffffff">вещества, необходимые для каталитического действия того или иного фермента.

;font-family:"Times New Roman"">Озоление – это ;font-family:"Times New Roman";color:#000000;background:#ffffff">химическая операция, состоящая в разрушении органического субстрата (обычно посредством сжигания).

;font-family:"Times New Roman"">Сидеоз – это ;font-family:"Times New Roman";color:#000000;background:#ffffff">заболевание человека, вызываемое осаждением в лёгких пыли, содержащей железо.

;font-family:"Times New Roman"">Тяжелые металлы – это группа химических элементов со свойствами металлов(в том числе и полуметаллы) и значительным атомным весом либо плотностью.

;font-family:"Times New Roman"">ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

;font-family:"Times New Roman"">В данной курсовой работе применяются следующие обозначения и сокращения:

;font-family:"Times New Roman"">АПДК – ;font-family:"Times New Roman";color:#010101;background:#ffffff">ООО ПКФ "Агропромдоркомплект-Урал"

;font-family:"Times New Roman"">ВОЗ – всемирная организация здравоохранения

;font-family:"Times New Roman"">МИБК – ;font-family:"Times New Roman";color:#000000;background:#ffffff">метил изобутил кетон

;font-family:"Times New Roman"">ДСД – допустимая суточная доза

;font-family:"Times New Roman"">ПДК – предельно-допустимые концентрации

;font-family:"Times New Roman"">ТЭЦ – ;font-family:"Times New Roman";color:#000000;background:#ffffff">тепловая электростанция

;font-family:"Times New Roman"">ФАО – продовольственная и сельскохозяйственная организация

;font-family:"Times New Roman"">ВВЕДЕНИЕ

;font-family:"Times New Roman";color:#000000">За последнее время большое значение приобрела проблема, связанная с загрязнением пищевых продуктов тяжёлыми металлами и другими химическими веществами. В атмосферу идет огромный выброс токсичных веществ со всевозможных производств: фабрик, заводов и т.д. Попадая в атмосферу и воду, тем самым они загрязняют и почву, а с ней и растения. Растения, в свою очередь, это основа всех пищевых продуктов.

;font-family:"Times New Roman";color:#000000">Тяжелые металлы также попадают в мясо, молоко, так как животные, употребляя растения, употребляют тем самым и токсичные элементы, то есть тяжелые металлы, которые накапливаются в растениях. Завершающим звеном в этой цепочке, является человек, который потребляет большое разнообразие пищевых продуктов.

;font-family:"Times New Roman";color:#000000">Тяжелые металлы способны накапливаться и трудно выводиться из организма. Они пагубно влияют на организм человека и здоровья в целом.

;font-family:"Times New Roman";color:#000000">Поэтому важной задачей является разработка методов определения токсичных веществ в пищевых продуктах.

;font-family:"Times New Roman";color:#000000">При этом весьма важным вопросом является также определение среднего и предельно допустимого содержания концентраций металлов в пищевых продуктах.

;font-family:"Times New Roman";color:#000000">Целью курсовой работы является:

  1. ;font-family:"Times New Roman";color:#000000">рассмотрение методов определения содержания тяжёлых металлов в различных пищевых продукта ;font-family:"Times New Roman"">х
  2. ;font-family:"Times New Roman"">
  3. ;font-family:"Times New Roman"">
  4. ;font-family:"Times New Roman"">
  5. ;font-family:"Times New Roman"">поведение тяжелых металлов в воздухе, в воде, в почве

;font-family:"Times New Roman";color:#000000">
1. Теоретические аспекты загрязнения пищевых продуктов

;font-family:"Times New Roman";color:#000000">1.1 ;font-family:"Times New Roman"">Источники загрязнения пищевых продуктов тяжёлыми металлами

;font-family:"Times New Roman"">Термин "тяжелые металлы" связан с высокой относительной атомной массой. Эта характеристика обычно сравниваются с представлением о высокой токсичности. Одним из признаков, которые позволяют относить металлы к тяжелым, является их плотность.

;font-family:"Times New Roman"">Согласно сведениям, представленным в "Справочнике по элементарной химии" под ред. А.Т.Пилипенко (1977), к тяжелым металлам относятся элементы, плотность которых более 5 г/см3. Таким образом, к тяжелым металлам относят более 40 химических элементов с относительной плотностью более 6. Число же опасных загрязнителей, если учитывать токсичность, стойкость и способность накапливаться во внешней среде, а также масштабы распространения указанных металлов, значительно меньше.

;font-family:"Times New Roman"">Прежде всего, представляют интерес те металлы, которые наиболее широко и в значительных объемах используются в производственной деятельности и в результате накопления во внешней среде представляют серьезную опасность с точки зрения их биологической активности и токсических свойств. К ним относят: свинец, ртуть, кадмий, цинк, висмут, кобальт, никель, медь, олово, сурьму, ванадий, марганец, хром, молибден и мышьяк.

;font-family:"Times New Roman"">В атмосферном воздухе тяжелые металлы присутствуют в форме органических и неорганических соединений в виде пыли и аэрозолей, а также в газообразной элементной форме (ртуть). При этом аэрозоли свинца, кадмия, меди и цинка состоят преимущественно их субмикронных частиц диаметром 0,5–1 мкм, а аэрозоли никеля и кобальта – из крупнодисперсных частиц (более 1 мкм), которые образуются в основном при сжигании дизельного топлива. В водных средах металлы присутствуют в трех формах: взвешенные частицы, коллоидные частицы и растворенные соединения. Последние представлены свободными ионами и растворимыми комплексными соединениями с органическими (гуминовые и фульвокислоты) и неорганическими (галогениды, сульфаты, фосфаты, карбонаты) лигандами. Большое влияние на содержание этих элементов в воде оказывает гидролиз, во многом определяющий форму нахождения элемента в водных средах. Значительная часть тяжелых металлов переносится поверхностными водами во взвешенном состоянии.

;font-family:"Times New Roman"">В почвах тяжелые металлы содержатся в водорастворимой, ионообменной и непрочно адсорбированной формах. Водорастворимые формы, как правило, представлены хлоридами, нитратами, сульфатами и органическим комплексными соединениями. Кроме того, ионы тяжелых металлов могут быть связаны с минералами как часть кристаллической решетки.

;font-family:"Times New Roman"">В таблице 1 приведены биогеохимические свойства тяжёлых металлов.

;font-family:"Times New Roman"">Таблица 1. Биогеохимические свойства тяжёлых металлов

">Свойство

" xml:lang="uk-UA" lang="uk-UA">С " xml:lang="en-US" lang="en-US">d

" xml:lang="en-US" lang="en-US">Co

" xml:lang="en-US" lang="en-US">Cu

" xml:lang="en-US" lang="en-US">Hg

" xml:lang="en-US" lang="en-US">Ni

" xml:lang="en-US" lang="en-US">Pb

" xml:lang="en-US" lang="en-US">Zn

">Биохимическая активность

">В

">В

">В

">В

">В

">В

">В

">Токсичность

">В

">У

">У

">В

">У

">В

">У

">Канцерогенность

">–

">В

">–

">–

">В

">–

">–

">Обогащение аэрозолей

">В

">Н

">В

">В

">Н

">В

">В

">Минеральная форма распространения

">В

">В

">Н

">В

">Н

">В

">Н

">Органическая форма распространения

">В

">В

">В

">В

">В

">В

">В

">Подвижность

">В

">Н

">У

">В

">Н

">В

">У

">Тенденция к биоконцентрированию

">В

">В

">У

">В

">В

">В

">У

">Эффективность накопления

">В

">У

">В

">В

">У

">В

">В

">Комплексообразующая способность

">У

">Н

">В

">У

">Н

">Н

">В

">Склонность к гидролизу

">У

">Н

">В

">У

">У

">У

">В

">Растворимость соединений

">В

">Н

">В

">В

">Н

">В

">В

">Время жизни

">В

">В

">В

">Н

">В

">Н

">В

;font-family:"Times New Roman"">где В – высокая, У – умеренная, Н – низкая.

;font-family:"Times New Roman"">Добыча и переработка не являются самым мощным источником загрязнения среды металлами. Валовые выбросы от этих предприятий значительно меньше выбросов от предприятий теплоэнергетики. Не металлургическое производство, а именно процесс сжигания угля является главным источником поступления в биосферу многих металлов. В угле и нефти присутствуют все металлы. Значительно больше, чем в почве, токсичных химических элементов, включая тяжелые металлы, в золе электростанций, промышленных и бытовых топок. Выбросы в атмосферу при сжигании топлива имеют особое значение. Например, количество ртути, кадмия, кобальта, мышьяка в них в 3–8 раз превышает количество добываемых металлов. Известны данные о том, что только один котлоагрегат современной ТЭЦ, работающий на угле, за год выбрасывает в атмосферу в среднем 1–1,5 т паров ртути. Тяжелые металлы содержатся и в минеральных удобрениях .

;font-family:"Times New Roman"">Наряду со сжиганием минерального топлива важнейшим путем техногенного рассеяния металлов является их выброс в атмосферу при высокотемпературных технологических процессах (металлургия, обжиг цементного сырья и др.), а также транспортировка, обогащение и сортировка руды.

;font-family:"Times New Roman"">Техногенное поступление тяжелых металлов в окружающую среду происходит в виде газов и аэрозолей (возгона металлов и пылевидных частиц) и в составе сточных вод. Металлы сравнительно быстро накапливаются в почве и крайне медленно из нее выводятся: период полураспада цинка – до 500 лет, кадмия – до 1100 лет, меди – до 1500 лет, свинца – до нескольких тысяч лет.

;font-family:"Times New Roman"">Существенный источник загрязнения почвы металлами – применение удобрений из шламов, полученных из промышленных и канализационных очистных сооружений.

;font-family:"Times New Roman"">В выбросах металлургических производств тяжелые металлы находятся, в основном, в нерастворимой форме. По мере удаления от источника загрязнения наиболее крупные частицы оседают, доля растворимых соединений металлов увеличивается, и устанавливаются соотношения между растворимой и нерастворимыми формами. Аэрозольные загрязнения, поступающие в атмосферу, удаляются из нее путем естественных процессов самоочищения. Важную роль при этом играют атмосферные осадки. В итоге выбросы промышленных предприятий в атмосферу, сбросы сточных вод создают предпосылки для поступления тяжелых металлов в почву, подземные воды и открытые водоемы, в растения, донные отложения и животных.

;font-family:"Times New Roman"">Максимальной способностью концентрировать тяжелые металлы обладают донные отложения, планктон, бентос и рыбы.

;font-family:"Times New Roman"">
1.2 Загрязнение химическими элементами продовольственного сырья

;font-family:"Times New Roman"">Токсичные элементы (в частности, некоторые тяжелые металлы) составляют обширную и весьма опасную в токсикологическом отношении группу веществ. К ним относятся: ртуть, свинец, кадмий, цинк, мышьяк, алюминий, медь, железо, стронций и другие.

;font-family:"Times New Roman"">Разумеется, не все перечисленные элементы являются ядовитыми, некоторые из них необходимы для нормальной жизнедеятельности человека и животных. Поэтому часто трудно провести четкую границу между биологически необходимыми и вредными для здоровья человека веществами.

;font-family:"Times New Roman"">В большинстве случаев реализация того или иного эффекта зависит от концентрации. При повышении оптимальной физиологической концентрации элемента в организме может наступить интоксикация, а дефицит многих элементов в пище и воде может привести к достаточно тяжелым и трудно распознаваемым явлениям недостаточности.

;font-family:"Times New Roman"">Загрязнение водоемов, атмосферы, почвы, сельскохозяйственных растений и пищевых продуктов токсичными металлами происходит за счет:

  1. ;font-family:"Times New Roman"">выбросов промышленных предприятий (особенно угольной, металлургической и химической промышленности);
  2. ;font-family:"Times New Roman"">выбросов городского транспорта (имеется в виду загрязнение свинцом от сгорания этилированного бензина);
  3. ;font-family:"Times New Roman"">применения в консервном производстве некачественных внутренних покрытий, технологии припоев;
  4. ;font-family:"Times New Roman"">контакта с оборудованием (для пищевых целей допускается весьма ограниченное число сталей и других сплавов).

;font-family:"Times New Roman"">Для большинства продуктов установлены ПДК токсичных элементов, к детским и диетическим продуктам предъявляются более жесткие требования.

;font-family:"Times New Roman"">Наибольшую опасность из вышеназванных элементов представляют ртуть, свинец, кадмий.

;font-family:"Times New Roman"">1.2.1 Ртуть

;font-family:"Times New Roman"">Ртуть – один из самых опасных и высокотоксичных элементов, обладающих способностью накапливаться в растениях и в организме животных и человека, т. е. является ядом кумулятивного действия.

;font-family:"Times New Roman"">Токсичность ртути зависит от вида ее соединений, которые по–разному всасываются, метаболизируются и выводятся из организма.

;font-family:"Times New Roman"">Наиболее токсичны алкилртутные соединения с короткой цепью – метилртуть, этилртуть, диметилртуть. Механизм токсичного действия ртути связан с ее взаимодействием с сульфгидрильными группами белков. Блокируя их, ртуть изменяет свойства или инактивирует ряд жизненно важных ферментов. Неорганические соединения ртути нарушают обмен аскорбиновой кислоты, пиридоксина, кальция меди, цинка, селена; органические – обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, марганца, селена. Защитным эффектом при воздействии ртути на организм человека обладают цинк и, особенно, селен. Предполагают, что защитное действие селена обусловлено диметилированием ртути и образованием нетоксичного соединения – селено– ртутного комплекса. О высокой токсичности ртути свидетельствуют и очень низкие значения ПДК: 0,0003мг/м ;font-family:"Times New Roman";vertical-align:super">3 ;font-family:"Times New Roman""> в воздухе и 0,0005 мг/л в воде.

;font-family:"Times New Roman"">В организм человека ртуть поступает в наибольшей степени с рыбопродуктами (80–600 мкг/кг), в которых ее содержание может многократно превышать ПДК. Мясо рыбы отличается наибольшей концентрацией ртути и ее соединений, поскольку активно аккумулирует их из воды и корма, в который входят различные гидробионты, богатые ртутью. Организм рыб способен синтезировать метилртуть, которая накапливается в печени. У некоторых рыб в мышцах содержится белок – металлотионеин, который с различными металлами, в том числе и с ртутью, образует комплексные соединения, способствуя тем самым накапливанию ртути в организме и передаче ее по пищевым цепям.

;font-family:"Times New Roman"">Из других пищевых продуктов характерно содержание ртути: в продуктах животноводства: мясо, печень, почки, молоко, сливочное масло, яйца (от 2 до 20 мкг/кг); в съедобных частях сельскохозяйственных растений: овощи, фрукты, бобовые, зерновые в шляпочных грибах (6–447 мкг/кг), причем в отличие от растений в грибах может синтезироваться метилртуть. При варке рыбы и мяса концентрация ртути в них снижается, при аналогичной обработке грибов остается неизменной. Это различие объясняется тем, что в грибах ртуть связана с аминогруппами азотсодержащих соединений, в рыбе и мясе – с серосодержащими аминокислотами.

;font-family:"Times New Roman"">1.2.2 Свинец

;font-family:"Times New Roman"">Свинец – один из самых распространенных и опасных токсикантов. История его применения очень древняя, что связано с относительной простотой его получения и большой распространенностью в земной коре ;font-family:"Times New Roman"">(%). ;font-family:"Times New Roman""> Соединения свинца – Рb ;font-family:"Times New Roman";vertical-align:sub">3 ;font-family:"Times New Roman"">O ;font-family:"Times New Roman";vertical-align:sub">4 ;font-family:"Times New Roman""> и PbSO ;font-family:"Times New Roman";vertical-align:sub">4 ;font-family:"Times New Roman""> – основа широко применяемых пигментов: сурика и свинцовых белил. Глазури, которые используются для покрытия керамической посуды, также содержат соединения Pb. Металлический свинец со времен Древнего Рима применяют при прокладке водопроводов. В настоящее время перечень областей его применения очень широк: производство аккумуляторов, электрических кабелей, химическое машиностроение, атомная промышленность, производство эмалей, лаков, хрусталя, пиротехнических изделий, спичек, пластмасс и т.п. Мировое производство свинца составляет более т в год. В результате производственной деятельности человека в природные воды ежегодно попадает 500 – 600 тыс. т, а в атмосферу в переработанном и мелкодисперсном состоянии выбрасывается около 450 тыс.т, подавляющее большинство которого оседает на поверхности Земли. Основным источниками загрязнения атмосферы свинцом являются выхлопные газы автотранспорта (260 тыс. т) и сжигание каменного угля (около 30 тыс. т). В тех странах, где использование бензина с добавлением тетраэтилсвинца сведено к минимуму, содержание свинца в воздухе удалось многократно снизить. Следует подчеркнуть, что многие растения накапливают свинец, который передается по пищевым цепям и обнаруживается в мясе и молоке сельскохозяйственных животных, особенно активное накопление свинца происходит вблизи промышленных центров и крупных автомагистралей.

;font-family:"Times New Roman"">Ежедневное поступление свинца в организм человека с пищей – 0,1 – 0,5 мг; с водой – 0,02 мг. Содержание свинца в мг/кг в различных продуктах составляет от 0,01 до 3,0.

;font-family:"Times New Roman"">В организме человека усваивается в среднем 10 % поступившего свинца, у детей – 30 – 40 %. Из крови свинец поступает в мягкие ткани и кости, где депонируется в виде трифосфата. Механизм токсического действия свинца имеет двойную направленность. Во–первых, блокада SH – групп белков и, как следствие, инактивация ферментов, во-вторых, проникновение Pb в нервные и мышечные клетки, образование лактата свинца, затем фосфата свинца, которые создают клеточный барьер для проникновения ионов Са ;font-family:"Times New Roman";vertical-align:super">2+ ;font-family:"Times New Roman"">.

;font-family:"Times New Roman"">Основными мишенями при воздействии свинца являются кроветворная, нервная и пищеварительная системы, а также почки. Свинцовая интоксикация может приводить к серьезным нарушениям здоровья, проявляющихся в частых головных болях, головокружениях, повышенной утомляемости, раздражительности, ухудшениях сна, гипотонии, а наиболее тяжелых случаях к параличам, умственной отсталости. Неполноценное питание, дефицит в рационе кальция, фосфора, железа, пектинов, белков, увеличивает усвоение свинца, а следовательно – его токсичность. Допустимая суточная доза (ДСД) свинца составляет 0,007 мг/кг; величина ПДК в питьевой воде – 0,05 мг/л.

;font-family:"Times New Roman"">Мероприятия по профилактике загрязнения свинцом сырья и пищевых продуктов должны включать государственный и ведомственный контроль за промышленными выбросами свинца в атмосферу, водоемы и почву. Необходимо существенно снизить или полностью исключить применение тетраэтилсвинца в бензине, красителях, упаковочных материалах и т.п.

;font-family:"Times New Roman"">1.2.3 Кадмий

;font-family:"Times New Roman"">Кадмий широко применяется в различных отраслях промышленности. В воздух кадмий поступает вместе со свинцом при сжигании топлива на ТЭЦ, с газовыми выбросами предприятий, производящих или использующих кадмий. Загрязнение почвы кадмием происходит при оседании кадмий – аэрозолей из воздуха и дополняется внесением минеральных удобрений (суперфосфата, фосфата калия, селитры).

;font-family:"Times New Roman"">В некоторых странах соли кадмия применяют в качестве антисептических и антигельминтных препаратов в ветеринарии. Все это определяет основные пути загрязнения кадмием окружающей среды, а следовательно, продовольственного сырья и пищевых продуктов.

;font-family:"Times New Roman"">Содержание кадмия (в мкг/кг) в различных продуктах следующее. Растительные продукты: зерновые – 28–95; горох – 15–19; картофель – 12–50; капуста – 2–26; фрукты – 9–42; грибы – 100–500; в продуктах животноводства: молоко – 2,4; творог – 6,0; яйца – 23–250.

;font-family:"Times New Roman"">Установлено, что приблизительно 80 % кадмия поступает в организм человека с пищей, 20 % – через легкие из атмосферы и при курении. С рационом взрослый человек получает до 150 мкг/кг и выше кадмия в сутки. В одной сигарете содержится 1,5 – 2,0 мкг Cd.

;font-family:"Times New Roman"">Подобно ртути и свинцу, кадмий не является жизненно необходимым металлом. Попадая в организм, кадмий проявляет сильное токсическое действие, главной мишенью которого являются почки.

;font-family:"Times New Roman"">Механизм токсического действия кадмия связан с блокадой сульфгидрильных групп белков; кроме того он является антагонистом цинка, кобальта, селена, ингибирует активность ферментов, содержащих указанные металлы.

;font-family:"Times New Roman"">Известна способность кадмия нарушать обмен железа и кальция. Все это может привести к широкому спектру заболеваний: гипертоническая болезнь, анемия, ишемическая болезнь сердца, почечная недостаточность и другие.

;font-family:"Times New Roman"">Отмечены канцерогенный, мутагенный и тератогенный эффекты кадмия. По рекомендациям ВОЗ допустимая суточная доза (ДСД) кадмия – 1 мкг/кг массы тела.

;font-family:"Times New Roman"">Большое значение в профилактике интоксикации кадмием имеет правильное питание (включение в рацион белков, богатых серосодержащими аминокислотами, аскорбиновой кислоты, железа, цинка, селена, кальция), контроль за содержанием кадмия и исключение из рациона продуктов, богатых кадмием.

;font-family:"Times New Roman"">1.2.4 Алюминий

;font-family:"Times New Roman""> Первые данные о токсичности алюминия были получены в 70–х годах прошлого века, и это явилось неожиданностью для человечества. Будучи третьим, по распространенности элементом земной коры и обладая ценными качествами, Al нашел широкое применение в технике и быту. Поставщиками алюминия в организм человека является алюминиевая посуда, если она контактирует с кислой или щелочной средой, вода которая обогащается ионами Al ;font-family:"Times New Roman";vertical-align:super">3+ ;font-family:"Times New Roman""> при обработке ее сульфатом алюминия на водоочистительных станциях.

;font-family:"Times New Roman"">Существенную роль в загрязнении окружающей среды ионами Al ;font-family:"Times New Roman";vertical-align:super">3+ ;font-family:"Times New Roman"">играют и кислотные дожди. Не следует злоупотреблять содержащими гидроксид алюминия лекарствами: противогеморроидальными, противоартритными, понижающими кислотность желудочного сока. Как буферную добавку вводят гидроксид алюминия и в губную помаду. Среди пищевых продуктов наивысшей концентрацией алюминия (до 20 мг/г) обладает чай.

;font-family:"Times New Roman"">Поступающие в организм человека ионы Al ;font-family:"Times New Roman";vertical-align:super">3+ ;font-family:"Times New Roman""> в форме нерастворимого фосфата выводятся с фекалиями, частично всасываются в кровь и выводятся почками. При нарушении деятельности почек происходит накапливание алюминия, которое приводит к нарушению метаболизма Ca, Mg, P, F, сопровождающееся ростом хрупкости костей, развитием различных форм анемии. Кроме того, были обнаружены: нарушение речи, ориентации, провалы в памяти, и т.п. Все это позволяет приблизить «безобидный», считавшийся нетоксичным до недавнего времени алюминий к «мрачной тройке» супертоксикантов: ртуть, свинец, кадмий.

;font-family:"Times New Roman"">1.2.5 Мышьяк

;font-family:"Times New Roman"">Мышьяк как элемент в чистом виде ядовит только в высоких концентрациях. Он принадлежит к тем микроэлементам, необходимость которых для жизнедеятельности организма человека не доказана, за исключением его стимулирующего действия на процесс кроветворения. Соединения же мышьяка, такие как мышьяковистый ангидрид, арсениты и арсенаты, сильно токсичны.

;font-family:"Times New Roman"">Мышьяк содержится во всех объектах биосферы (в земной коре – 2 мг/кг, в морской воде – 5 мкг/кг).

;font-family:"Times New Roman"">Известными источниками загрязнения окружающей среды мышьяком являются электростанции, использующие бурый уголь, медеплавильные заводы. Мышьяк используется при производстве полупроводников, стекла, красителей, инсектицидов, фунгицидов и т.д.

;font-family:"Times New Roman"">Нормальный уровень содержания мышьяка в продуктах питания не должен превышать 1 мг/кг. Так, например, фоновое содержание мышьяка (мг/кг): в овощах и фруктах 0,01–0,2; в зерновых 0,006–1,2; в говядине 0,005–0,05; в печени 2,0; яйцах 0,003–0,03.

;font-family:"Times New Roman"">Повышенное содержание мышьяка отмечается в рыбе и других гидробионтах, в частности в ракообразных и моллюсках. По данным ФАО/ВОЗ, в организм человека с суточным рационом поступает в среднем 0,05 – 0,45мг мышьяка. ДСД – 0,05 мг/кг массы тела. В зависимости от дозы мышьяк может вызывать острое и хроническое отравление. Разовая доза мышьяка 30 мг – смертельна для человека. Механизм токсического действия мышьяка связан с блокированием SH – групп белков и ферментов, выполняющих в организме самые разнообразные функции.

;font-family:"Times New Roman"">1.2.6 Медь

;font-family:"Times New Roman"">Медь ;font-family:"Times New Roman"">. ;font-family:"Times New Roman""> Содержание в земной коре составляет 4,5 мг/кг, морской воде – 1–25 мкг/кг, в организме взрослого человека – около 100 мг/кг.

;font-family:"Times New Roman";background:#ffffff">Медь является жизненно важным элементом, который входит в состав многих витаминов, гормонов, ферментов, дыхательных пигментов, участвует в процессах обмена веществ, в тканевом дыхании и т.д. Медь имеет большое значение для поддержания нормальной структуры костей, хрящей, сухожилий (коллаген), эластичности стенок кровеносных сосудов, легочных альвеол, кожи (эластин). Медь входит в состав миелиновых оболочек нервов. В организме взрослого человека половина от общего количества меди содержится в мышцах и костях и 10% ;font-family:"Times New Roman"">– ;font-family:"Times New Roman";background:#ffffff"> в печени.

;font-family:"Times New Roman";color:#000000;background:#ffffff">Некоторые соединения меди могут быть токсичны при превышении ПДК в пище и воде. Содержание меди в питьевой воде не должно превышать 2 мг/л (средняя величина за период из 14 суток), однако недостаток меди в питьевой воде также нежелателен.

;font-family:"Times New Roman"">Содержание меди в пищевых продуктах составляет, мг/кг: печень животных – 30-40, морепродукты – 4 – 8, орехи – 5– 12, мука – 5– 8, зерновые – 2– 8.

;font-family:"Times New Roman"">Медь, в отличие от ртути и мышьяка, принимает активное участие в процессах жизнедеятельности, входя в состав ряда ферментных систем. Суточная потребность - 0,9 мг. Дефицит меди приводит к анемии, недостаточности роста, ряду других заболеваний, в отдельных случаях – к смертельному исходу.

;font-family:"Times New Roman"">В организме присутствуют механизмы биотрансформации меди. При длительном воздействии высоких доз меди наступает «поломка» механизмов адаптации, переходящая в интоксикацию и специфическое заболевание. В этой связи является актуальной проблема охраны окружающей среды и пищевой продукции от загрязнения медью и ее соединениями. Основная опасность исходит от промышленных выбросов, передозировки инсектицидами, другими токсичными солями меди, потребления напитков, пищевых продуктов, соприкасающихся в процессе производства с медными деталями оборудования или медной тары.

;font-family:"Times New Roman"">1.2.7 Цинк

;font-family:"Times New Roman"">Цинк. Содержится в земной коре в количестве 65 мг/кг, морской воде – 9–21 мкг/кг, организме взрослого человека – 1,4–2,3 г/кг.

;font-family:"Times New Roman"">Цинк как кофактор входит в состав около 80 ферментов, участвуя тем самым в многочисленных реакциях обмена веществ. Типичными симптомами недостаточности цинка являются замедление роста у детей, половой инфантилизм у подростков, нарушения вкуса (гипогезия) и обоняния (гипосмия) и др.

;font-family:"Times New Roman"">Суточная потребность в цинке взрослого человека составляет 15 мг, при беременности и лактации – 20–25 мг. Цинк, содержащийся в растительных продуктах, менее доступен для организма, поскольку фитин растений и овощей связывает цинк (10% усвояемости). Из продуктов животного происхождения цинк усваивается на 40%. Содержание цинка в пищевых продуктах составляет, мг/кг: мясо – 20–40, рыбопродукты – 15–30, устрицы – 60–1000, яйца – 15–20, фрукты и овощи – 5, картофель, морковь – около 10, орехи, зерновые – 25–30, мука высшего сорта – 5–8, молоко – 2–6 мг/л. В суточном рационе взрослого человека содержание цинка составляет 13–25 мг. Цинк и его соединения малотоксичны. Содержание цинка в воде в концентрации 40 мг/л безвредно для человека.

;font-family:"Times New Roman"">Вместе с тем возможны случаи интоксикации при нарушении использования пестицидов, небрежного терапевтического применения препаратов цинка. Признаками интоксикации являются тошнота, рвота, боль в животе, диарея. Отмечено, что цинк в присутствии сопутствующих мышьяка, кадмия, марганца, свинца в воздухе на цинковых предприятиях вызывает у рабочих «металлургическую» лихорадку.

;font-family:"Times New Roman"">Известны случаи отравлений пищей или напитками, хранившимися в железной оцинкованной посуде. Такие продукты содержали 200–600 мг/кг и более цинка. В этой связи приготовление и хранение пищевых продуктов в оцинкованной посуде запрещено. ПДК цинка в питьевой воде – 5 мг/л, для водоемов рыбохозяйственного назначения – 0,01 мг/л.

;font-family:"Times New Roman"">1.2.8 Олово

;font-family:"Times New Roman"">Необходимость олова для организма человека не доказана. Вместе с тем пищевые продукты содержат этот элемент до 1–2 мг/кг, организм взрослого человека – около 17 мг олова, что указывает на возможность его участия в обменных процессах.

;font-family:"Times New Roman"">Количество олова в земной коре относительно невелико. При поступлении олова с пищей всасывается около 1%. Олово выводится из организма с мочой и желчью.

;font-family:"Times New Roman"">Неорганические соединения олова малотоксичны, органические – более токсичны, находят применение в сельском хозяйстве в качестве фунгицидов, в химической промышленности – как стабилизаторы поливинилхлоридных полимеров. Основным источником загрязнения пищевых продуктов оловом являются консервные банки, фляги, железные и медные кухонные котлы, другая тара и оборудование, которые изготавливаются с применением лужения и гальванизации. Активность перехода олова в пищевой продукт возрастает при температуре хранения выше 20ºС, высоком содержании в продукте органических кислот, нитратов и окислителей, которые усиливают растворимость олова.

;font-family:"Times New Roman"">Опасность отравления оловом увеличивается при постоянном присутствии его спутника – свинца. Не исключено взаимодействие олова с отдельными веществами пищи и образование более токсичных органических соединений. Повышенная концентрация олова в продуктах придает им неприятный металлический привкус, изменяет цвет. Имеются данные, что токсичная доза олова при его однократном поступлении – 5–7 мг/кг массы тела, т.е. 300–500 мг. Отравление оловом может вызвать признаки острого гастрита (тошнота, рвота и др.), отрицательно влияет на активность пищеварительных ферментов.

;font-family:"Times New Roman"">Действенной мерой предупреждения загрязнения пищи оловом является покрытие внутренней поверхности тары и оборудования стойким, гигиенически безопасным лаком или полимерным материалом, соблюдение сроков хранения баночных консервов, особенно продуктов детского питания, использование для некоторых консервов (в зависимости от рецептуры и физико–химических свойств) стеклянной тары.

;font-family:"Times New Roman"">1.2.9 Железо

;font-family:"Times New Roman"">Железо занимает четвертое место среди наиболее распространенных в земной коре элементов (5% земной коры по массе).

;font-family:"Times New Roman"">Этот элемент необходим для жизнедеятельности как растительного, так и животного организма. У растений дефицит железа проявляется в желтизне листьев и называется хлорозом, у человека вызывает железодефицитную анемию, поскольку двухвалентное железо – кофактор в гемсодержащих ферментах, участвует в образовании гемоглобина. Железо выполняет целый ряд других жизненно важных функций: перенос кислорода, образование эритроцитов, обеспечивает активность негемовых ферментов – альдолазы, триптофаноксигеназы и т.д.

;font-family:"Times New Roman"">В организме взрослого человека содержится около 4,5 г железа. Содержание железа в пищевых продуктах колеблется в пределах 0,07–4 мг/100г. Основным источником железа в питании являются печень, почки, бобовые культуры (6–20 мг/100 г). потребность взрослого человека в железе составляет около 14 мг/сут, у женщин в период беременности и лактации она возрастает.

;font-family:"Times New Roman"">Железо из мясных продуктов усваивается организмом на 30%, из растений – 10%. Последнее объясняется тем, что растительные продукты содержат фосфаты и фитин, которые образуют с железом труднорастворимые соли, что препятствует его усвояемости. Чай также снижает усвояемость железа в результате связывания его с дубильными веществами в труднорастворимый комплекс .

;font-family:"Times New Roman"">Несмотря на активное участие железа в обмене веществ, этот элемент может оказывать токсическое действие при поступлении в организм в больших количествах. Так, у детей после случайного приема 0,5 г железа или 2,5 г сульфата железа наблюдали состояние шока. Широкое промышленное применение железа, распространение его в окружающей среде повышает вероятность хронической интоксикации. Загрязнение пищевых продуктов железом может происходить через сырье, при контакте с металлическим оборудованием и тарой, что определяет соответствующие меры профилактики.

;font-family:"Times New Roman"">
2. Классификация и методы определения тяжёлых металлов в пищевых продуктах

;font-family:"Times New Roman"">2.1 Понятие и методы качественного и количественного анализа

;font-family:"Times New Roman"">Качественный и количественный анализ являются предметом аналитической химии. Аналитическая химия занимается исследованием экспериментальных методов определения состава веществ. Определение состава веществ включает выявление природы компонентов, из которых состоит исследуемое вещество, и установление количественных соотношений этих компонентов.

;font-family:"Times New Roman"">Сначала устанавливают качественный состав исследуемого объекта, т.е. решают вопрос, из чего он состоит, а затем приступают к определению количественного состава, т.е. узнают, в каких количественных соотношениях обнаруженные составные части находятся в объекте исследования.

;font-family:"Times New Roman"">2.1.1 Качественный анализ

;font-family:"Times New Roman"">Качественный анализ вещества можно проводить химическими, физическими, физико–химическими методами.

;font-family:"Times New Roman"">Химические методы анализа ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">основаны на применении характерных химических реакций для установления состава анализируемого вещества.

;font-family:"Times New Roman"">Химический анализ вещества проводят двумя способами: «сухим путем» или «мокрым путем». Анализ сухим путем – это химические реакции, происходящие с веществами при накаливании, сплавлении и окрашивании пламени.

;font-family:"Times New Roman"">Анализ мокрым способом – это химические реакции, протекающие в растворах электролитов. Анализируемое вещество предварительно растворяют в воде или других растворителях. В зависимости от массы или объема взятого для анализа вещества, от применяемой техники различают макро–, полумикро– и микрометоды.

;font-family:"Times New Roman"">Макрометод. Для проведения анализа берут 1–2 мл раствора, содержащего не менее 0,1 г вещества, и добавляют не менее 1 мл раствора реактива. Реакции проводят в пробирке, осадок отделяют фильтрованием. Осадок на фильтре промывают от примесей.

;font-family:"Times New Roman"">Полумикрометод. Для анализа берут в 10–20 раз меньше вещества (до 0,01 г). Так как в этом методе работают с малыми количествами вещества, то пользуются микропробирками, часовыми или предметными стеклами. Для отделения осадка от раствора применяют центрифугирование.

;font-family:"Times New Roman"">Микрометод. При выполнении анализа данным методом берут одну–две капли раствора, а сухого вещества – в пределах 0,001г. Характерные реакции проводят на часовом стекле или фарфоровой пластинке.

;font-family:"Times New Roman"">При проведении анализа пользуются следующими операциями: нагревание и выпаривание, осаждение, центрифугирование, проверка полноты осаждения, отделение раствора (центрифуга) от осадка, промывание и растворение осадка.

;font-family:"Times New Roman"">Нагревание растворов можно вести непосредственно пламенем газовой горелки, на асбестовой сетке или водяной бане. Небольшое количество раствора нагревают до температуры, не превышающей 100°С, на водяной бане, вода в которой должна кипеть равномерно.

;font-family:"Times New Roman"">Для концентрирования растворов применяют водяную баню. Выпаривание раствора до сухого остатка проводят в фарфоровых чашках или тиглях, нагревая их на асбестовой сетке. Если сухой остаток после выпаривания необходимо прокалить для удаления летучих солей, то тигель ставят на фарфоровый треугольник и нагревают пламенем газовой горелки.

;font-family:"Times New Roman"">Осаждение. Реакцию осаждения проводят в конических колбах или цилиндрической пробирках. В исследуемый раствор приливают пипеткой реактив–осадитель. Осадитель берут в избытке. Смесь тщательно перемешивают стеклянной палочкой и потирают о внутренние стенки пробирки, это ускоряет процесс образования осадка. Осаждение часто ведут из горячих растворов.

;font-family:"Times New Roman"">Центрифугирование. Осадок отделяют от раствора центрифугированием, используя ручную или электрическую центрифугу. Пробирку с раствором и осадком помещают в гильзу. Центрифуга должна быть загружена равномерно. При быстром вращении центробежная сила отбрасывает частицы осадка на дно и уплотняет его, а раствор (центрифугат) становится прозрачным. Время вращения составляет от 30 с до нескольких минут.

;font-family:"Times New Roman"">Проверка полноты осаждения. Пробирку осторожно вынимают из центрифуги и добавляют по стенке 1–2 капли реактива–осадителя к прозрачному раствору. Если раствор не мутнеет, значит осаждение полное. Если же наблюдается помутнение раствора, то в пробирку еще добавляют осадитель, содержимое перемешивают, нагревают и вновь центрифугируют, затем повторяют проверку полноты осаждения.

;font-family:"Times New Roman"">Отделение раствора (центрифугата) от осадка. Убедившись в полноте осаждения, отделяют раствор от осадка. Раствор от осадка отделяют капельной пипеткой. Пипетку закрывают указательным пальцем и осторожно вынимают из пробирки. Если отобранный раствор необходим для анализа, то его переносят в чистую пробирку. Для полного отделения операцию повторяют несколько раз. При центрифугировании осадок может плотно осесть на дно пробирки, тогда раствор отделяют декантацией (осторожно сливают).

;font-family:"Times New Roman"">Промывание осадка ;font-family:"Times New Roman"">. ;font-family:"Times New Roman""> Осадок (если он исследуется) необходимо хорошо отмыть; для этого приливают промывную жидкость, чаще всего дистиллированную воду. Содержимое тщательно перемешивают стеклянной палочкой и центрифугируют, затем промывную жидкость отделяют. Иногда в работе эту операцию повторяют 2–3 раза.

;font-family:"Times New Roman"">Растворение осадка. Для растворения осадка в пробирку добавляют растворитель, помешивая стеклянной палочкой. Нередко растворение осадка ведут при нагревании на водяной бане.

;font-family:"Times New Roman"">2.3 Количественный анализ

;font-family:"Times New Roman"">Для определения количественного состава вещества или продукта используются реакции нейтрализации, осаждения, окисления – восстановления, комплексообразования. Количество вещества можно определить по его массе или объему раствора, затраченного на взаимодействие с ним, а также по показателю преломления раствора, его электрической проводимости или интенсивности окраски и т.п.

;font-family:"Times New Roman"">По количеству взятого для исследования вещества аналитические методы количественного анализа классифицируются следующим образом: макроанализ – 1–10 г твердого вещества, 10–100 мл анализируемого раствора; полумикроанализ – 0,05–0,5 твердого вещества, 1–10 мл анализируемого раствора; микроанализ – 0,001–1–10– ;font-family:"Times New Roman";vertical-align:super">4 ;font-family:"Times New Roman""> г твердого вещества, 0,1–1 ;font-family:"Times New Roman";vertical-align:sub">* ;font-family:"Times New Roman"">10– ;font-family:"Times New Roman";vertical-align:super">4 ;font-family:"Times New Roman""> мл анализируемого ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">раствора. В товароведной практике часто пользуются гравиметрическим (весовым) и титриметрическим (объемным) методами.

;font-family:"Times New Roman"">Гравиметрический (весовой) анализ – один из методов количественного анализа, который позволяет определять состав анализируемого вещества путем измерения массы. Измерение массы (взвешивание) выполняется на аналитических весах с точностью 0,0002 г. Этот метод часто используется в пищевых лабораториях для определения влажности, зольности, содержания отдельных элементов или соединений. Анализ может быть выполнен одним из следующих способов.

;font-family:"Times New Roman"">Определяемую составную часть количественно (полностью, насколько это возможно) выделяют из исследуемого вещества и взвешивают. Так определяют зольность продуктов. Взвешенный на аналитических весах исходный продукт (навеску) сжигают, полученную золу доводят до постоянной массы (прокаливают до тех пор, пока не перестанет изменяться масса) и взвешивают.

;font-family:"Times New Roman"">Зольность продукта х (%) рассчитывают по формуле

;font-family:"Times New Roman""> ;font-family:"Times New Roman"">, ;font-family:"Times New Roman"">(1)

;font-family:"Times New Roman"">где В – масса прокаленной золы, г;

;font-family:"Times New Roman""> А – исходная навеска продукта, г.

;font-family:"Times New Roman"">Из навески исходного вещества полностью удаляют определяемую составную часть и остаток взвешивают. Так определяют влажность продуктов, при этом навеску исходного вещества высушивают в сушильном шкафу до постоянной массы.

;font-family:"Times New Roman"">Влажность продукта х (%) рассчитывают по формуле

;font-family:"Times New Roman"">, (2)

;font-family:"Times New Roman"">где А – исходная навеска продукта, г;

;font-family:"Times New Roman""> В – масса навески после высушивания, г.

;font-family:"Times New Roman"">Объемный анализ – метод количественного анализа, где искомое вещество определяют по объему реактива с точно известной концентрацией, затраченному на реакцию с этим веществом.

;font-family:"Times New Roman"">При определении объемным методом к известному объему раствора определяемого вещества малыми порциями (по каплям) добавляют реактив с точно известной концентрацией до тех пор, пока его количество не будет эквивалентно количеству определяемого вещества. Раствор реактива с точно известной концентрацией называется титрованным, рабочим или стандартным раствором.

;font-family:"Times New Roman"">Процесс медленного прибавления титрованного раствора к раствору определяемого вещества называется титрованием. Момент, когда количество титрованного раствора будет эквивалентно количеству определяемого вещества, называется точкой эквивалентности или теоретической точкой конца титрования. Для определения точки эквивалентности пользуются индикаторами, которые вблизи ее претерпевают видимые изменения, выражающиеся в изменении цвета раствора, появлении помутнения или выпадении осадка.

;font-family:"Times New Roman"">Важнейшие условия для правильного проведения объемно–аналитических определений:

;font-family:"Times New Roman"">1) возможность точного измерения объемов растворов;

;font-family:"Times New Roman"">2) наличие стандартных растворов с точно известной концентрацией;

;font-family:"Times New Roman"">3) возможность точного определения момента окончания реакции (правильный выбор индикатора).

;font-family:"Times New Roman"">В зависимости от того, на какой реакции основано определение, различают следующие разновидности объемного метода:

  1. ;font-family:"Times New Roman"">метод нейтрализации
  2. ;font-family:"Times New Roman"">метод окисления – восстановления
  3. ;font-family:"Times New Roman"">метод осаждения и комплексообразования.

;font-family:"Times New Roman"">В основе метода нейтрализации лежит реакция взаимодействия ионов Н ;font-family:"Times New Roman";vertical-align:super">+ ;font-family:"Times New Roman""> и ОН ;font-family:"Times New Roman";vertical-align:super">– ;font-family:"Times New Roman"">. Метод применяется для определения кислот, оснований и солей (которые реагируют с кислотами или основаниями) в растворе. Для определения кислот используют титрованные растворы щелочей КОН или NаОН, для определения оснований – растворы кислот НС1, Н ;font-family:"Times New Roman";vertical-align:sub">2 ;font-family:"Times New Roman"">SO ;font-family:"Times New Roman";vertical-align:sub">4 ;font-family:"Times New Roman"">.

;font-family:"Times New Roman"">Для определения содержания, например, кислоты в растворе точно отмеренный пипеткой объем раствора кислоты в присутствии индикатора титруют раствором щелочи точно известной концентрации. Точку эквивалентности определяют по изменению цвета индикатора. По объему щелочи, израсходованной на титрование, вычисляют содержание кислоты в растворе.

;font-family:"Times New Roman"">Метод окисления – восстановления основан на окислительно-восстановительных реакциях, происходящих между стандартным раствором и определяемым веществом. Если стандартный раствор содержит окислитель (восстановитель), то определяемое вещество должно содержать соответственно восстановитель (окислитель). Метод окисления-восстановления подразделяется, в зависимости от используемого стандартного раствора на метод перманганатометрии, метод иодометрии и др.

;font-family:"Times New Roman"">В основе метода осаждения лежат реакции, сопровождающиеся выпадением осадка. В отличие от гравиметрического метода обработку осадка здесь не производят, массу исследуемого вещества определяют по объему реактива, израсходованному на реакцию осаждения .

;font-family:"Times New Roman"">
;font-family:"Times New Roman"">3 Классификация и характеристика методов исследования пищевых продуктов

;font-family:"Times New Roman"">При оценке показателей качества пищевых продуктов, как правило, используют органолептический и лабораторный методы.

;font-family:"Times New Roman"">Лабораторные методы широко применяются для установления химического состава, доброкачественности, физических и других свойств пищевых продуктов, а также для изучения процессов, происходящих в продуктах при технологической обработке и во время хранения. В зависимости от способов получения результатов эти методы подразделяют на:

  1. ;font-family:"Times New Roman"">физические;
  2. ;font-family:"Times New Roman"">физико-химические;
  3. ;font-family:"Times New Roman"">химические;
  4. ;font-family:"Times New Roman"">биохимические;
  5. ;font-family:"Times New Roman"">микробиологические;
  6. ;font-family:"Times New Roman"">физиологические;
  7. ;font-family:"Times New Roman"">технологические.

;font-family:"Times New Roman"">Осуществляют лабораторные методы с помощью приборов и химических реактивов, поэтому полученные результаты выражают конкретными величинами, которые отличаются большой точностью и выражаются в количественных показателях (в %, г и др.).

;font-family:"Times New Roman"">3.1 Физические и физико-химические методы

;font-family:"Times New Roman"">Физические и физико-химические методы характеризуются быстротой выполнения анализа, высокой степенью точности и малым количеством продукта, необходимого для анализа. Физические методы основаны на использовании физических свойств объектов исследования. Из физических методов в исследованиях качества продуктов чаще всего применяют поляриметрию, рефрактометрию и реологические методы. Физическими методами определяют относительную плотность продукта, температуры плавления и застывания продуктов, оптические показатели и др.

;font-family:"Times New Roman"">Поляриметрия ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">основана на способности некоторых оптически активных веществ вращать плотность поляризованного луча, проходящего через их растворы, в приборе (поляриметре, сахариметре). Поляриметрию обычно используют для установления вида сахара (сахарозы, глюкозы, мальтозы, фруктозы) и определения его концентрации в растворе.

;font-family:"Times New Roman"">С помощью рефрактометрии определяют содержание в продукте жира, влаги, спирта, сахара и других веществ ;font-family:"Times New Roman"">, ;font-family:"Times New Roman"">определяют качество жиров. Этот метод основан на измерении показателя преломления света в рефрактометре при прохождении его через жидкий продукт.

;font-family:"Times New Roman"">Реологические ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">методы применяют для изучения структурно–механических свойств пищевых продуктов. Эти свойства проявляются при механическом воздействии на продукты и характеризуют их поведение под действием, приложенной извне механической энергии. С помощью реологических методов определяют упруговязкие характеристики теста, вязкость мясного фарша, прочность крахмального клейстера, консистенцию маргарина и т.д.

;font-family:"Times New Roman""> ;font-family:"Times New Roman"">Физико-химические методы основаны на изучении зависимости между физическими свойствами и составом анализируемого вещества. Из физико-химических методов для исследования качества продуктов пользуются хроматографическим, потенциометрическим, фотометрическим, люминесцентным, кондуктометрическим, нефелометрическим методами, спектроскопией и др.

;font-family:"Times New Roman"">С помощью хроматографии изучают содержание и изменение химических веществ в процессе производства и хранения пищевых продуктов, природу и количество ароматических и красящих веществ, аминокислотный состав белков, жирнокислотный состав, содержание витаминов, органических кислот, сахаров, наличие ядохимикатов и фальсификацию пищевых продуктов.

;font-family:"Times New Roman"">Хроматографический метод отличается высокой чувствительностью. Принцип хроматографического анализа основан на том, что вещества, близкие по своим свойствам, обладают различной адсорбционной способностью, поэтому при прохождении через сорбент они разделяются.

;font-family:"Times New Roman"">Потенциометрический ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">метод основан на определении потенциала между электродом, насыщенным водородом, и жидкостью, имеющей водородные ионы. Этот метод широко используется для измерения рН.

;font-family:"Times New Roman"">рН – это отрицательный десятичный логарифм концентрации водородных ионов. В нейтральной среде рН равно 7,0, в кислой – меньше 7, в щелочной – больше 7.

;font-family:"Times New Roman"">Концентрация свободных ионов водорода характеризует качество большинства пищевых продуктов. Этот показатель можно применять для контроля биохимических процессов, происходящих при переработке и хранении пищевых продуктов, с активной кислотностью среды теснейшим образом связана жизнедеятельность микроорганизмов, по величине рН можно судить о свежести мяса и некоторых других продуктов.

;font-family:"Times New Roman"">Измерение рН можно осуществить на приборах, которые называются рН–метром или потенциометром.

;font-family:"Times New Roman""> Фотометрические методы основаны на взаимодействии лучистой энергии с анализируемым веществом. Они позволяют определить компоненты химического состава пищевых продуктов и судить об их свежести, доброкачественности. К этим методам относятся фотоколориметрия, спектрофотометрия, люминесцентный анализ и др.

;font-family:"Times New Roman"">Фотоколориметрический и спектрофотометрический методы основаны на избирательном поглощении света анализируемым веществом.

;font-family:"Times New Roman"">Фотоколориметрические методы определения концентрации вещества основаны на сравнении поглощения или пропускания света стандартным и исследуемым окрашенным раствором, причем степень поглощения регистрируется специальным оптическим прибором – колориметром с фотоэлементами (фотоколориметром).

;font-family:"Times New Roman"">Спектрофотометрия основана на измерении оптической плотности и процента пропускания световых потоков определенной длины волны через исследуемый раствор и эталон на спектрофотометре ;font-family:"Times New Roman"">.

;font-family:"Times New Roman"">Спектрофотометры применимы для анализа как одного вещества, так и систем, содержащих несколько компонентов. Кроме того, они позволяют работать как с окрашенными растворами, так и с бесцветными.

;font-family:"Times New Roman"">Фотоколориметрическим и спектрофотометрическим методами можно установить содержание, кофеина в чае и кофе, теобромина в какао, красящих веществ в плодах и овощах, в виноградных винах, содержание аммиака, нитритов и нитратов в мясных продуктах, свинца – в консервах, некоторых витаминов, цветность сахара и пищевых жиров и т. д.

;font-family:"Times New Roman"">Люминесцентный ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">анализ позволяет установить природу и состав исследуемого продукта. Этот метод основан на способности многих веществ после облучения их ультрафиолетовыми лучами испускать в темноте видимый свет различных оттенков. ;font-family:"Times New Roman""> ;font-family:"Times New Roman"">Белки, жиры и углеводы дают люминесцентное свечение определенных оттенков, которое меняется при изменении их состава. Так, свежая рыба при облучении дает голубой свет, если же она начала портиться, то свет становится фиолетовым ;font-family:"Times New Roman"">.

;font-family:"Times New Roman"">Люминесцентным методом можно обнаружить примесь маргарина в животных жирах, примесь плодово-ягодных вин в виноградных винах. Его используют для выяснения характера заболеваний плодов и овощей. По интенсивности люминесценции определяют порчу мяса, рыбы и овощей, наличие пестицидов и канцерогенных веществ в продуктах.
Кондуктометрический метод основан на измерении электропроводности материалов. С помощью этого метода определяют титруемую кислотность тёмноокрашенных продуктов (виноградных вин, плодово-ягодных соков), влажность сыпучих продуктов (зерно, мука, сахар-песок, кофе и др).

;font-family:"Times New Roman"">Нефелометрическим методом на основе определения количества света, рассеянного частицами суспензии, устанавливают степень мутности растворов прибором нефелометр.

;font-family:"Times New Roman"">Спектроскопия используется в товароведных исследованиях для количественного и качественного анализов пищевых продуктов. Спектральный метод анализа основан на изучении спектров паров исследуемых веществ. С помощью этого метода можно определять состав и количество макро– и микроэлементов, содержание в пище витаминов А, К, В1, В2, В6, никотиновой кислоты, каротина и др.

;font-family:"Times New Roman"">3.2 Химические и биохимические методы

;font-family:"Times New Roman"">Химические и биохимические методы используют для установления химического состава пищевых продуктов, количественного и качественного определения в продуктах различных компонентов. С их помощью можно судить об изменениях, происходящих в пищевых продуктах при производстве, транспортировании и хранении. Химические и биохимические методы – это методы аналитической, органической и биологической химии, основанные на химических свойствах веществ, их способности принимать участие в какой–либо специфической химической реакции с определенными реактивами. Эти методы проводятся с использованием приемов весового и объемного анализов.

;font-family:"Times New Roman"">В товароведной практике химические методы широко используют для установления соответствия показателей качества пищевых продуктов требованиям стандартов. Определение сахаров основано, например, на их способности окисляться в щелочной среде солями тяжелых металлов. Кислотность продуктов устанавливают титрованием раствором едкой щелочи в присутствии индикатора, а в окрашенных растворах с помощью рН–метра.

;font-family:"Times New Roman"">С помощью биохимических методов изучают интенсивность дыхания плодов и овощей, изменение сахаро- и газообразующей способности муки, процессы гидролиза и автолиза при созревании мяса и др. Так, интенсивность дыхания плодов и овощей определяют по количеству поглощенного кислорода и выделенного углекислого газа.

;font-family:"Times New Roman"">3.3 Микробиологические методы

;font-family:"Times New Roman"">Микробиологические методы служат для установления степени обремененности пищевых продуктов микроорганизмами. При этом определяют как общее их содержание, так и вид микробов, наличие в продуктах бактерий, вызывающих пищевые отравления и заболевания. При проведении микробиологических методов широко применяют микрокопирование.

;font-family:"Times New Roman"">Микробиологическими методами можно также определить содержание в пищевых продуктах витаминов, биологически активных веществ и др.

;font-family:"Times New Roman"">3.4 Физиологические методы

;font-family:"Times New Roman"">Физиологические методы анализа проводят главным образом на подопытных животных и птицах. Физиологические методы исследования качества пищевых продуктов применяют для определения усвояемости пищи, реальной энергетической ценности и т.д .

;font-family:"Times New Roman"">3.5 Технологические методы

;font-family:"Times New Roman"">Технологическими методами пользуются для установления степени пригодности продукта к промышленной переработке, а также для определения свойств продуктов, проявляющихся в процессе их употребления. Так, при изучении хлебопекарных свойств муки обязательно проводят пробную выпечку хлеба и определяют в нем объемный выход, цвет и характер корки, пористость, цвет, эластичность, липкость мякиша и другие показатели.

;font-family:"Times New Roman"">
;font-family:"Times New Roman"">4 Методы определения тяжёлых металлов в пищевых продуктах

;font-family:"Times New Roman"">4.1 Метод определения мышьяка

;font-family:"Times New Roman"">Мышьяк – высокотоксичный кумулятивный протоплазматический яд, поражающий нервную систему. Смертельная доза 60—200 мг. Хроническая интоксикация наблюдается при потреблении 1—5 мг в день. ФАО/ВОЗ установлена недельная безопасная доза 50 мкг/кг.

;font-family:"Times New Roman"">Токсическое действие соединений мышьяка обусловлено блокированием сульфгидрильных групп ферментов и других биологически активных веществ.

;font-family:"Times New Roman"">Определить мышьяк в пределах 1–50 мг/л можно с помощью колориметрических методов анализа на основе диэтилдитиокарбоната серебра. Удобным является метод атомно-абсорбционной спектроскопии. Он основан на определении арсина, полученного при восстановлении соединений мышьяка. Имеющиеся в продаже приборы для выделения арсина используются в сочетании со стандартным оборудованием. При анализе мышьяка рекомендуется использовать пламя закись азота–ацетилена. Из-за молекулярной абсорбции газов пламени могут возникать помехи в верхнем диапазоне ультрафиолетовой части спектра, где находятся наиболее чувствительные линии мышьяка. Эти помехи устраняются при корректировке фона.

;font-family:"Times New Roman"">Для определения микроколичества мышьяка с успехом использовался нейтронно-активационный анализ. Это позволило провести точные определения мышьяка в очень малых образцах, например в одном волоске.

;font-family:"Times New Roman"">Часто бывает необходимо установить тип химического соединения мышьяка. Для отличия в водных растворов трехвалентного мышьяка от пятивалентного использовали инверсионную полярографию. Для разделения органических соединений мышьяка от неорганических использовался метод газожидкостной хроматографии.

;font-family:"Times New Roman"">Арбитражный метод – колориметрия с диэтилдитиокарбонатом серебра после отгонки мышьяка из гидролизата (или раствора золы) в виде гидрида или трихлорида мышьяка. Атомно-абсорбционное определение возможно только после предварительного концентрирования в виде гидрида AsH3 и использования графитовой кюветы.

;font-family:"Times New Roman"">4.2 Методы определения кадмия

;font-family:"Times New Roman"">Кадмий — высокотоксичный кумулятивный яд, блокирующий, работу ряда ферментов; поражает почки и печень. ФАО/ВОЗ установлена недельная безопасная доза 6,7—8,3 мкг/кг. В устрицах и печени животных и рыб может накапливаться до значительных величин; в растительных продуктах зависит от дозы удобрения суперфосфатом.

;font-family:"Times New Roman"">Токсическое действие соединений кадмия на организм вызывается тем, что ионы этих металлов вступают во взаимодействие с сульфгидрильными SH–группами белков, ферментов и аминокислот. При взаимодействии ионов металлов с SH–группами образуются слабодиссоциирующие и, как правило, нерастворимые соединения. Поэтому блокирование сульфгидрильных групп приводит к подавлению активности ферментов и свертыванию белков.

;font-family:"Times New Roman"">В Таблице 2 приведено среднее содержание и ПДК С ;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">d ;font-family:"Times New Roman""> в пищевых продуктах.

;font-family:"Times New Roman"">Таблица 2. Среднее содержание и ПДК С ;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">d ;font-family:"Times New Roman""> в пищевых продуктах

">Пищевые продукты

">и сырье

;font-family:"Times New Roman"">Среднее содержание, мг/кг

;font-family:"Times New Roman"">ПДК, мг/кг

">Зерновые

;font-family:"Times New Roman"">0,03

;font-family:"Times New Roman"">0,1

;font-family:"Times New Roman"">Зернобобовые

;font-family:"Times New Roman"">0,03

;font-family:"Times New Roman"">0,1

;font-family:"Times New Roman"">Крупы

;font-family:"Times New Roman"">0,018

;font-family:"Times New Roman"">0,1

">Хлеб

;font-family:"Times New Roman"">0,023

;font-family:"Times New Roman"">0,05

">Бараночные изделия

;font-family:"Times New Roman"">0,026

;font-family:"Times New Roman"">0,1

">Отруби пшеничные

;font-family:"Times New Roman"">0,07

;font-family:"Times New Roman"">0,1

">Соль поваренная

;font-family:"Times New Roman"">0,05

;font-family:"Times New Roman"">0,1

">Сахар(песок)

;font-family:"Times New Roman"">0,004

;font-family:"Times New Roman"">0,05

">Желатин

;font-family:"Times New Roman"">0,01

;font-family:"Times New Roman"">0,03

">Орехи (ядро)

;font-family:"Times New Roman"">0,03

;font-family:"Times New Roman"">0,1

">Конфеты

;font-family:"Times New Roman"">0,045

;font-family:"Times New Roman"">0,1

">Какао–порошок и шоколад

;font-family:"Times New Roman"">0,1

;font-family:"Times New Roman"">0,5

">Печенье

;font-family:"Times New Roman"">0,03

;font-family:"Times New Roman"">0,1

">Молочные изделия

">Молоко, кисломолочные изделия

;font-family:"Times New Roman"">0,02

;font-family:"Times New Roman"">0,03

">Молоко сгущенное

">консервированное

;font-family:"Times New Roman"">0,025

;font-family:"Times New Roman"">0,1

">Молоко сухое

;font-family:"Times New Roman"">0,025

;font-family:"Times New Roman"">0,03

">Сыры, творог

;font-family:"Times New Roman"">0,1

;font-family:"Times New Roman"">0,2

">Масло сливочное

;font-family:"Times New Roman"">0,01

;font-family:"Times New Roman"">0,03

">Растительные продукты

">Масло растительное

;font-family:"Times New Roman"">0,025

;font-family:"Times New Roman"">0,05

">Маргарины и жиры

;font-family:"Times New Roman"">0,03

;font-family:"Times New Roman"">0,05

">Овощи свежие и свежемороженые

;font-family:"Times New Roman"">0,02

;font-family:"Times New Roman"">0,03

">и сухие

;font-family:"Times New Roman"">0,05

;font-family:"Times New Roman"">0,1

;font-family:"Times New Roman"">Для определения кадмия, как правило, требуется предварительное концентрирование, так как содержание металла в продуктах питания обычно мало. Комитет по аналитическим методам рекомендует проводить кислотную минерализацию серной кислотой с добавлением перекиси водорода. При сухом озолении могут быть потери кадмия, так как при температуре свыше 500ºС он испаряется. Содержание кадмия может быть установлено и путем образования комплексов с тетраметилендитиокарбонат-аммония, а также экстракцией кадмия изобутилметилкетоном.

;font-family:"Times New Roman"">Для определения кадмия в пищевых экстрактах может быть также использован колориметрический метод на основе дитизона.

;font-family:"Times New Roman"">В настоящее время наиболее широко применяется атомно-абсорбционная спектрофотометрия. Использование воздушно–ацетиленового пламени позволяет получить хорошие результаты, однако пламя должно тщательно контролироваться. Беспламенная атомно-абсорбционная спектрофотометрия позволяет определять кадмий на уровне 5 мкг/кг. Однако из-за химического влияния некоторых соединений, например солей калия, результаты могут быть искажены.

;font-family:"Times New Roman"">Есть данные по определению кадмия методом вольтамперометрии с анодным растворением. Результаты хорошо согласуются с данными атомно-абсорбционной спектрометрии. Достаточно надежные и точные данные удается получить с помощью нейтронно-активационного анализа. С использованием нового оборудования и повышением точности стало ясно, что данные, полученные ранее с помощью атомно-абсорбционной спектрофотомерии и менее точной пламенной фотометрии, не являются достоверными. Это объясняется несовершенством современных аналитических методов.

;font-family:"Times New Roman"">Определение кадмия в порошковом обезжиренном молоке. Необходимые реактивы. Первичный кислый фосфорнокислый аммоний, 0.5% раствор вес/об. (используется для химической модификации аналита). Примеси следов металлов в модификаторе должны быть удалены комплексообразованием АПДК и экстракцией МИБК.

;font-family:"Times New Roman"">Растворяют порошок молока (1.25 г) в деионизованной дистиллированной воде (25 мл) при хорошем перемешивании с использованием магнитной мешалки или ультразвуковой бани. Немного ТRITON Х–100 0.01% об. (1 мл) можно добавить для получения лучших диспергирующих свойств.

;font-family:"Times New Roman"">Приготовление градуировочных растворов. Водные стандарты: исходный стандарт 1000 мкг Cd/л в 1 М азотной кислоте. Готовят градуировочный раствор с концентрацией 10 мкг Cd/л разбавлением исходного раствора.

;font-family:"Times New Roman"">Процедура градуировки. Методом стандартных добавок с использованием программируемого дозатора образцов. Рекомендуемый объём образца – 10 мкл, объём стандартных добавок – 5 и 10 мкл, 10 мкл модификатора и бланковый раствор до общего для всех растворов объёма 30 мкл.

;font-family:"Times New Roman"">Этот метод не рекомендуется для свежего молока или порошков цельных молочных сливок. Для таких образцов или используют кислотное разложение или добавляют кислород на стадии озоления при анализе.

;font-family:"Times New Roman"">Так как Cd обычно присутствует в малых количествах, градуировочный раствор Cd должен иметь концентрацию 5 мкг/л или меньше. Для кадмия температура озоления должна быть не больше 750ºС.

;font-family:"Times New Roman"">4.3 Методы определения свинца

;font-family:"Times New Roman"">Свинец – высокотоксичный кумулятивный яд, поражающий нервную систему, почки. Хроническая интоксикация наступает при потреблении 1–3 мг в сутки. ФАО/ВОЗ установлена общая недельная безопасная доза 50 мкг/кг массы тела. Так как часть свинца поступает с воздухом и водой, с пищей человек может потреблять 300–400 мкг в день.

;font-family:"Times New Roman"">В моллюсках содержание свинца может достигать 15 мг/кг. В консервированных (в металлической таре) продуктах, содержащих кислоты, особенно в плодовых и овощных, содержание свинца может увеличиваться в 10 раз и более по сравнению с естественным уровнем.

;font-family:"Times New Roman"">Свинец депонируется в основном в скелете (до 90%) в форме труднорастворимого фосфата:

"> "> (3)

;font-family:"Times New Roman"">Используют как сухое озоление с добавкой нитрата магния или алюминия и кальция, так и мокрое – смесью азотной и хлорной кислот, применение серной кислоты не рекомендуется. Для текущих исследований – колориметрия с дитизоном, в который для устранения мешающего влияния цинка и олова добавляют цианид калия. Теряется в заметном количестве в присутствии хлоридов. Озоление веществ, содержащих свинец, проводится при температуре (500–600)º С. Определение проводят согласно ГОСТ 26932–86, ИСО 6633–84.

;font-family:"Times New Roman"">4.4 Методы определения ртути

;font-family:"Times New Roman"">Ртуть – высокотоксичный, кумулятивный яд, поражающий нервную систему и почки. Наиболее токсичны некоторые органические соединения, особенно метилртуть, составляющая в рыбе от 50 до 90% общей ртути. Установлена недельная безопасная доза общей ртути 5 мкг/кг массы тела, в том числе метилртути 3,3 мкг/кг. В наибольших количествах содержится в рыбе, обычно пропорционально ее возрасту и размеру, и особенно велико ее содержание у хищных рыб. При кулинарной тепловой обработке рыб теряется около 20% ртути.

;font-family:"Times New Roman"">Токсическое действие соединений ртути на организм вызывается тем, что ионы этих металлов вступают во взаимодействие с сульфгидрильными SH–группами белков, ферментов и аминокислот. При взаимодействии ионов металлов с SH–группами образуются слабодиссоциирующие и, как правило, нерастворимые соединения. Поэтому блокирование сульфгидрильных групп приводит к подавлению активности ферментов и свертыванию белков.

;font-family:"Times New Roman"">Из-за летучести элемента возможны потери даже при хранении и сушке образца. Поэтому рекомендуют только мокрое озоление смесями азотной, серной, иногда хлорной кислот с добавкой перманганата или молибдата при невысоких температурах и в специальной герметичной аппаратуре.

;font-family:"Times New Roman"">Определение ртути в пищевых продуктах и других биологических объектах требует точности и высокого мастерства. В настоящие время ртуть определяют тремя основными аналитическими методами: колориметрический, методом пламенной атомно-абсорбционной спектрометрии и методом нейтронно-активационного анализа.

;font-family:"Times New Roman"">Колориметрический метод. Этот метод основан на переводе металла, содержащегося в навески, в комплекс с дитизоном, который экстрагируют органическим растворителем и затем колориметрируют. Эти операции длительны; предел обнаружения составляет около 0,05 мг/кг. Для определения требуется большая навеска (5 г) образца.

;font-family:"Times New Roman"">Метод пламенной атомно-абсорбционной спектрометрии. Методом пламенной атомно-абсорбционной спектрометрии в настоящие время широко используется для определения ртути. Имеется оборудование, позволяющее приспособить стандартную атомно-абсорбционную спектрометрию для так называемой техники холодного испарения. При этом используются циркуляционные и нециркуляционные методы. В первом случае содержание ртути в образце измеряют по значению мгновенной абсорбции ртути при прохождении ее паров через абсорбционную ячейку. При циркуляционных методах пары ртути накапливаются постепенно до достижения постоянной абсорбции. Для перевода ионов ртути в молекулярную форму используется хлорид олова. Метод применим для растворов, содержащих ртуть в форме, легко поддающейся восстановлению хлоридом олова.

;font-family:"Times New Roman"">Для определения ртути используются и другие аналитические методы.

;font-family:"Times New Roman"">Нейтронно-активационный анализ, например, характеризуется высокой селективностью и точностью. Он эффективен для определения ртути в небольших навесках при проведении общего анализа пищи.

;font-family:"Times New Roman"">Арбитражный метод – атомно-абсорбционный с использованием техники низкотемпературного холодного пара. Для текущих, исследований — колориметрия с йодидом меди. Колориметрия с дитизоном не рекомендуется, так как для большинства продуктов не позволяет определять величины ПДК. Метилртуть определяют методом газожидкостной хроматографии. Также определяют содержание ртути согласно нормативным документам ГОСТ 26927–86.

;font-family:"Times New Roman"">4.5 Методы определения цинка

;font-family:"Times New Roman"">Цинк – необходимый элемент, участвующий в работе ряда важных ферментов и гормона инсулина. Повышенные количества цинка токсичны. Так, признаки токсичности установлены при длительном потреблений воды с содержанием цинка 0,04 мг/к ;font-family:"Times New Roman"" xml:lang="uk-UA" lang="uk-UA">г ;font-family:"Times New Roman"">. Много содержится в пшеничных отрубях и в устрицах — до 150 мг/кг. При хранении кислых продуктов в оцинкованной таре содержание элемента может увеличиваться в несколько раз.

;font-family:"Times New Roman"">Все еще широко применяется дитизон-колориметрический метод для качественного и количественного определения цинка. Окрашенный комплекс экстрагируют органическим растворителем и сравнивают со стандартами аналогично приготовленным раствором цинка. Предел определения составляет 0,7 мг/л.

;font-family:"Times New Roman"">Наиболее широко в настоящие время применяется метод атомно-абсорбционный спектрофотомерии. Метод чувствителен, и при этом другие элементы практически не мешают определению.

;font-family:"Times New Roman"">Также определяю цинк согласно стандартной методики определения по ГОСТ 26У34–86.

;font-family:"Times New Roman"">Средне содержание и ПДК цинка в пищевых продуктах приведены в таблице 3.

;font-family:"Times New Roman"">Таблица 3.Среднее содержание и ПДК цинка в пищевых продуктах

">Пищевые продукты

">и сырье

;font-family:"Times New Roman"">Среднее содержание ;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">, мг/кг

;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">ПДК, мг/кг

">Зерновые

;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">23

;font-family:"Times New Roman"">50,0

;font-family:"Times New Roman"">Зернобобовые

;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">28

;font-family:"Times New Roman"">50,0

;font-family:"Times New Roman"">Крупы

;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">22

;font-family:"Times New Roman"">50,0

">Хлеб

;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">10

;font-family:"Times New Roman"">25,0

">Бараночные изделия

;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">7 ;font-family:"Times New Roman"">, ;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">0

;font-family:"Times New Roman"">30,0

">Отруби пшеничные

;font-family:"Times New Roman"" xml:lang="en-US" lang="en-US">100

;font-family:"Times New Roman"">130,0

">Соль поваренная

;font-family:"Times New Roman"">6,0

;font-family:"Times New Roman"">10,0

">Сахар(песок)

;font-family:"Times New Roman"">0,9

;font-family:"Times New Roman"">3,0

">Желатин

;font-family:"Times New Roman"">5,0

;font-family:"Times New Roman"">100,0

">Орехи " xml:lang="en-US" lang="en-US"> ">(ядро)

;font-family:"Times New Roman"">21

;font-family:"Times New Roman"">50,0

">Конфеты

;font-family:"Times New Roman"">7,8

;font-family:"Times New Roman"">30,0

">Какао–порошок и шоколад

;font-family:"Times New Roman"">60

;font-family:"Times New Roman"">70,0

">Печенье

;font-family:"Times New Roman"">6,8

;font-family:"Times New Roman"">30,0

">Молочные изделия

">Молоко, кисломолочные

">изделия

;font-family:"Times New Roman"">4,5

;font-family:"Times New Roman"">5,0

">Молоко сгущенное

">консервированное

;font-family:"Times New Roman"">5,0

;font-family:"Times New Roman"">15,0

">Молоко сухое

;font-family:"Times New Roman"">5,0

;font-family:"Times New Roman"">5,0

">Сыры, творог

;font-family:"Times New Roman"">44

;font-family:"Times New Roman"">50,0

">Масло сливочное

;font-family:"Times New Roman"">0,3

;font-family:"Times New Roman"">5,0

">Растительные продукты

">Масло растительное

;font-family:"Times New Roman"">0,36

;font-family:"Times New Roman"">5,0

">Маргарины и жиры

;font-family:"Times New Roman"">2,0

;font-family:"Times New Roman"">10,0

">Овощи свежие и

">свежемороженые

;font-family:"Times New Roman"">1,5

;font-family:"Times New Roman"">10,0

">Грибы свежие, консервированные

">и сухие

;font-family:"Times New Roman"">2,9

;font-family:"Times New Roman"">20,0

;font-family:"Times New Roman"">4.6 Методы определения железа

;font-family:"Times New Roman"">Железо – необходимый элемент в жизнедеятельности человека, однако при повышенных содержаниях оно токсично. Установлено, что при потреблении железа >200 мг в день наступает гепатический сидероз. Железо является еще более сильным окислителем, чем медь, и вызывает такие же нежелательные явления. Поэтому часто железо в продуктах нормируют на более низком уровне, чем это необходимо по токсикологическим показателям (например, в жирах и маслах 1,5—5 мг/кг). Много содержится в бобовых растениях и в печени и почках животных (250—400 мг/кг). В напитках при хранении в металлической незащищенной таре из черного металла содержание железа может достигать 7мг/кг и выше.

Озоление образцов, содержащих железо, проводят при температуре (500–600) ºС, иногда – до 800ºС. Окислители обычно не добавляют, однако азотная кислота и нитриты ускоряют окисление. При озолении образцов, содержащих хлориды, теряется некоторое количества железа .

;font-family:"Times New Roman"">Железо в биологических материалах легко определяют колориметрическими, спектрофотометрическими и другими инструментальными методами. Способность переходных металлов образовывать окрашенные комплексы используются во многих колориметрических методах. Низкие концентрации железа легко определить методами пламенной и беспламенной атомно-абсорбционной спектрофотометрии. Наиболее эффективными обычно бывает воздушно–ацетиленовое пламя, при этом другие неорганические вещества не создают помех. Перед анализом образцы подвергаются либо кислотной минерализации, либо озоляются с последующим растворением в разбавленной кислоте. Однако при непосредственном анализе жидких пищевых продуктов возникают трудности, связанные с вязкостью и поверхностным натяжением жидкости (растительного масла), а также с наличием в них растворенной углекислоты (пиво). Для решения этих проблем можно использовать метод добавок, а также дегазацию напитков, содержащих углекислый газ.

;font-family:"Times New Roman'">Имеются данные, что при атомно-абсорбционном определении присутствие в растворе лимонной кислоты в концентрации 200 мг/л снижает абсорбцию более чем на 50 %. Увеличение высоты пламени и добавление фосфорной кислоты позволяют устранить это действие. Было установлено, что применение пламени закись азота-ацетилена позволяет устранить практически все помехи.

;font-family:'Times New Roman'">
ЗАКЛЮЧЕНИЕ

;font-family:'Times New Roman'">На сегодняшний день самыми современными и точными методами анализа пищевых продуктов являются колориметрический метод с использованием различных соединений, пламенная и беспламенная атомно-абсорбционная спектрометрия, вольтамперометрия, нейтронно-активационный анализ, а также пламенная фотометрия. Эти методы анализа позволяют определить такие тяжёлые металлы, как железо, свинец, кадмий, ртуть, цинк и др.

;font-family:'Times New Roman'">На организм человека и животных физиологическое действие металлов различно и зависит от природы металла, типа соединения, в котором он существует в природной среде, а также его концентрации. Многие тяжелые металлы проявляют выраженные комплексообразующие свойства. Так, в водных средах ионы этих металлов гидратированы и способны образовывать различные гидроксокомплексы, состав которых зависит от кислотности раствора. Если в растворе присутствуют какие-либо анионы или молекулы органических соединений, то ионы этих металлов образуют разнообразные комплексы различного строения и устойчивости. В ряду тяжелых металлов одни крайне необходимы для жизнеобеспечения человека и других живых организмов и относятся к так называемым биогенным элементам. Другие вызывают противоположный эффект и, попадая в живой организм, приводят к его отравлению или гибели.

;font-family:'Times New Roman'">В ходе написания курсовой работы я рассмотрела следующие проблемы:

  1. ;font-family:'Times New Roman';color:#000000">методы определения содержания тяжёлых металлов в различных пищевых продукта ;font-family:'Times New Roman'">х
  2. ;font-family:'Times New Roman'">отрицательное влияние тяжелых металлов на организм человека и животных
  3. ;font-family:'Times New Roman'">отрицательное влияние тяжелых металлов на окружающие среду и растения
  4. ;font-family:'Times New Roman'">болезни, возникающие от переизбытка тяжелых металлов в организме человека
  5. ;font-family:'Times New Roman'">поведение тяжелых металлов в воздухе, в воде, в почве.

;font-family:'Times New Roman'">
СПИСОК ЛИТЕРАТУРЫ

  1. ;font-family:'Times New Roman'">Гончарова В.Н. Товароведение пищевых продуктов / В. Н. Гончарова, Е. Я. Голощапова. - 2-изд., перераб. – М. : Экономика, 1990. - 271 с.
  2. ;font-family:'Times New Roman'">Елисеева Л.Г. Товароведение и экспертиза продовольственных товаров

;font-family:'Times New Roman'"> / Л.Г. Елисеева ;font-family:'Verdana';color:#000000;background:#ffffff">- ;font-family:'Times New Roman';color:#000000;background:#ffffff">М.: МЦФЭР, ;font-family:'Verdana';color:#000000;background:#ffffff"> ;font-family:'Times New Roman'">2006. - 800с.

  1. ;font-family:'Times New Roman'">Круглякова Г.В. Товароведение продовольственных товаров / Г.В. Круглякова,Кругляков Г.Н. ;font-family:'Arial';color:#333333"> ;font-family:'Times New Roman';color:#333333">- ;font-family:'Times New Roman'">Изд. центр «Март»,2005. - 496 с.
  2. ;font-family:'Times New Roman'">Дубцов Г.Г. Товароведение пищевых продуктов / Дубцов Г. Г. – М.: Изд. Центр «Академия», 2008.- 264 с.
  3. ;font-family:'Times New Roman'"> Гаммидулаев С.Н. Товароведение и экспертиза плодоовощных товаров / Гаммидулаев С. Н., Иванова Е. В., Николаева С. П., Симонова В. Н. – ;font-family:'Times New Roman';background:#ffffff">СПб. : Троицкий мост, 2010. - 367 с.
  4. ;font-family:'Times New Roman'">Николаев М. А. Товароведение плодов и овощей / Николаева М. А. – ;font-family:'Times New Roman';color:#000000;background:#ffffff">М.: ИНФРА, 2001 ;font-family:'Times New Roman'">. – 120 с.
  5. ;font-family:'Times New Roman';color:#000000">Новикова А.М. Товароведение и организация торговли продовольственными товарами / Новикова А.М., Голубкина Т.С. ;font-family:'Times New Roman'">– ;font-family:'Times New Roman';color:#000000;background:#ffffff"> М: «Академия», 2004. - 480 с.
  6. ;font-family:'Times New Roman'">Алемасова А.С. Аналитическая атомно–абсорбционная спектроскопия /Алемасова А.С., Рокун А.Н., Шевчук И.А. – Севастополь: «Вебер», 2003. – 327 с.
  7. ;font-family:'Times New Roman'">Шимитл.Л. Химия и обеспечение человечества пищей. Пер. с англ.

;font-family:'Times New Roman'">/ Под ред. Л.Шимилта. – М.:Мир, 1986. - 616 с.

  1. ;font-family:'Times New Roman'"> Клячко Ю.А. Методы анализа пищевых продуктов. Проблемы аналитической химии / Клячко Ю.А., Беленький С.М. – М.: Наука, 1988.- 464 с.
  2. ;font-family:'Times New Roman'"> Дубцов, Г.Г. Товароведение пищевых продуктов/ Г.Г. Дубцов. – М.: Высшая школа, 2001. – 102 с.

Ртуть — весьма токсичный яд кумулятивного действия (т. е. способный накапливаться), поэтому в молодых животных его меньше чем в старых, а в хищниках больше, чем в тех объектах, которыми они питаются. Особенно этим отличаются хищные рыбы такие, как тунец , где ртуть может накапливаться до 0,7 мг/кг и более. Поэтому хищной рыбой лучше не злоупотреблять в питании. Из других животных продуктов «накопителем» ртути являются почки животных - до 0,2 мг/кг. Это, конечно относится к сырому продукту. Поскольку почки при кулинарной обработке предварительно многократно вымачивают по 2-3 ч со сменой воды и дважды вываривают, то в оставшемся продукте содержание ртути уменьшается почти в 2 раза.

Из растительных продуктов ртуть больше всего содержится в орехах в какао-бобах и шоколаде (до 0,1 мг/кг). В большинстве остальных продуктов содержание ртути не превышает 0,01-0,03 мг/кг.

Свинец

Свинец - яд высокой токсичности. В большинстве растительных и животных продуктов естественное его содержание не превышает 0,5-1,0 мг/кг. Больше всего свинца содержится в хищных рыбах (в тунце до 2,0 мг/кг), моллюсках и ракообразных (до 10 мг/кг).

В основном повышение содержания свинца наблюдается консервах, помещенных в так называемую сборную жестяную тару которая спаивается сбоку и к крышке припоем, содержащим определенное количество свинца. К сожалению, пайка иногда бывает некачественная (образуются брызги припоя), и хотя консервные банки еще дополнительно покрываются специальным лаком это не всегда помогает. Имеются случаи, правда довольно редкие (до 2%), когда в консервах из этой тары накапливается, особенно при длительном хранении, до 3 мг/кг свинца и даже выше что, конечно, представляет опасность для здоровья, поэтому продукты в этой сборной жестяной таре не хранят более 5 лет.

Свинец и этилированный бензин

Большое загрязнение свинцом происходит от сгорания этилированного бензина. Тетраэтилсвинец , добавленный в бензин для повышения октанового числа в количестве около 0,1% весьма летуч и более токсичен, чем сам свинец и его неогранические соединения. Он легко попадает в почву и загрязняет пищевые продукты. Поэтому продукты, выращенные вдоль автострад содержат повышенное количество свинца. В зависимости от интенсивности движения эта опасная зона может простираться от 10 до 500 м. Поэтому вдоль дорог следует сажать только лесные породы или выращивать кормовые культуры. Однако этим иногда пренебрегают и часто вдоль дорог высаживают плодовые деревья, которые дают загрязненные свинцом плоды. Прекрасный пример в отношении борьбы с загрязнением продуктов показала Дания. Там уже несколько лет запретили использование в автомобилях этилированного бензина и естественный уровень свинца в основных овощах (картофель, морковь , лук) сократился в 2-3 раза. Будем надеяться, что у нас появится такое же отрицательное отношение к использованию этилированного бензина.

Кадмий

Кадмий - это весьма токсичный элемент. Кадмия естественного в пищевых продуктах содержится примерно в 5-10 раз меньше, чем свинца. Повышенные концентрации его наблюдаются в какао-порошке (до 0,5 мг/кг), почках животных (до 1,0 мг/кг) и рыбе (до 0,2 мг/кг). Содержание кадмия увеличивается в консервах из сборной жестяной тары, так как кадмий, как и свинец, переходит в продукт из некачественно выполненного припоя, в котором также содержится определенное количество кадмия.

Как тяжелые металлы попадают в продукты?

Токсические элементы могут попасть в опасных для человека концентрациях в пищевые продукты из сырья и в процессе технологической обработки только при нарушении соответствующих технологических инструкций. Так, в растительном сырье они могут появиться при нарушении правил применения ядохимикатов, содержащих в своем составе такие токсические элементы, как ртуть, свинец, мышьяк и др. Повышенное количество токсических элементов может появиться в зоне вблизи промышленных предприятий, загрязняющих воздух и воду недостаточно очищенными отходами производства.

При технологии производства пищевых продуктов токсические элементы могут появиться при контактах с оборудованием, выполненным из металла, не разрешенного органами здравоохранения (для пищевых целей допускается весьма ограниченное количество сталей и других сплавов). Но главным образом такие токсические элементы, как свинец и кадмий, могут появиться в консервном производстве при использовании жестяной тары с применением пайки швов в случае нарушения технологии пайки, при использовании случайных припоев или применения некачественных внутренних покрытий.

Органами санитарного надзора установлены жесткие нормы содержания токсических элементов в пищевом сырье и готовых продуктах питания. Для большинства продуктов имеются предельно допустимые концентрации токсичных элементов в основных продуктах питания.

Требования к содержанию тяжелых металлов в продуктах питания

Для производства детских и диетических продуктов по ряду тяжелых металлов предъявляются более жесткие требования. Так, для зернобобовых продуктов содержание свинца допускается только 0,3 мг/кг, а кадмия 0,03 мг/кг. В таблице ниже не приведено содержание предельно допустимых концентраций олова и железа. Олово контролируется только в консервах из сборной жестяной тары, где допускается до 200 мг/кг (в детских - до 100 мг/кг). Железо нормируется только в напитках типа пива и вина (15 мг/кг), жирах и маслах (5 мг/кг).

В концентрированных растительных и животных продуктах (сушеных, сублимированных и т. д.) предельно допустимая концентрация тяжелых металлов определяется, как правило, при пересчете на исходный продукт.

Задача специалистов пищевой промышленности - постоянно контролировать пищевое сырье и готовую продукцию для того, чтобы обеспечить выпуск безвредных для здоровья продуктов питания.

Как избежать появления тяжелых металлов в продуктах

В домашнем питании тоже необходим контроль, который заключается в предупреждении загрязнения консервированных продуктов свинцом. Рекомендуется вскрытые консервы из сборных жестяных банок, даже для кратковременного хранения помешать в стеклянную или фарфоровую посуду, так как под влиянием кислорода воздуха коррозия банок резко увеличивается и буквально через несколько дней содержание свинца (и олова) в продукте многократно возрастает. Нельзя также хранить маринованные, соленые и кислые овощи и фрукты в оцинкованной посуде во избежание загрязнения продуктов цинком и кадмием (цинковыи слой также содержит некоторое количество кадмия).

Нельзя хранить и приготавливать пищу в декоративной фарфоровой или керамической посуде (т. е. в посуде, предназначенной для украшения, но не для пищи), так как очень часто глазурь, особенно желтого и красного цвета, содержит соли свинца и кадмия, которые легко переходят в пищу, если такую посуду использовать для еды. Для приготовления и хранения продуктов следует использовать только посуду, специально предназначенную для пищевых целей.

То же самое относится к красивым пластмассовым пакетам и пластмассовой посуде. В них можно хранить и то непродолжительное время только сухие продукты.

Предельно допустимое содержание тяжелых металлов в продуктах питания

В таблице ниже приведены сведения по предельно допустимому содержанию тяжелых металлов в некоторых основных продуктах питания.

ПДК тяжелых металлов в основных продуктах питания
Продукты Свинец Кадмий Мышьяк Ртуть Медь Цинк
Большинство зернобобовых 0,5 0,1 0,2-0,3 0,02-0,03 10 50
Сахар и конфеты 1,0 0,1 0,5 0,02-0,03 10-20 50
Молоко и большинство жидких молочных продуктов 0,1 0,03 0,05 0,005 1,0 5
Масло растительное и изделия из него 0,1 0,05 0,1 0,05 1,0 5-10
Овощи, ягоды, фрукты свежие и свежезамороженные 0,04-0,5 0,03 0,2 0,02 5,0 10,0
Овощи, ягоды, фрукты и изделия из них в сборной жестяной таре 1,0 0,05 0,2 0,02 5,0 10,0
Мясо и птица свежие 0,5 0,05 0,1 0,03 5,0 20
Мясо и птица консервированные в сборной жестяной таре 1,0 0,1 0,1 0,03 5,0 70
Рыба свежая и мороженная 1,0 0,2 1,0-5,0 0,3-0,6 10 40
Рыба консервированная в сборной жестяной таре 1,0 0,2 1,0-5,0 0,3-0,7 10 40
Напитки 0,1-0,3 0,01-0,03 0,1-0,2 0,005 1,0-5,0 5,0-10