Экспериментальные методы исследования в гистологии. Методы исследования в гистологии. Подготовка препаратов к микроскопии. Методы исследования живых клеток и тканей

Объекты исследования подразделяются на:

· живые (клетки в капле крови, клетки в культуре и другие);

· мертвые или фиксированные, которые могут быть взяты как от живого организма (биопсия), так и от трупов.

В любом случае после взятия кусочков они подвергаются действию фиксирующих растворов или замораживанию. И в научных, и в учебных целях используются фиксированные объекты. Приготовленные определенным способом препараты, используемые для изучения под микроскопом, называются гистологическими препаратами.

Гистологический препарат может быть в виде: (тонкого окрашенного среза органа или ткани; мазка на стекле;отпечатка на стекле с разлома органа;тонкого пленочного препарата).

Гистологический препарат любой формы должен отвечать следующим требованиям: (сохранять прижизненное состояние структур;быть достаточно тонким и прозрачным для изучения его под микроскопом в проходящем свете;быть контрастным, то есть изучаемые структуры должны под микроскопом четко определяться; препараты для световой микроскопии должны долго сохраняться и использоваться для повторного изучения.)

Эти требования достигаются при приготовлении препарата.

Методы исследования:

Световая микроскопия -Микроскопирование - основной метод изучения препаратов - используется в биологии уже более 300 лет. Ультрафиолетовая микроскопия - Это разновидность световой микроскопии. В ультрафиолетовом микроскопе используют более короткие ультрафиолетовые лучи с длиной волны около 0,2 мкм. Флюоресцентная (люминесцентная) микроскопия - Явления флюоресценции заключаются в том, что атомы и молекулы ряда веществ, поглощая коротковолновые лучи, переходят в возбужденное состояние. Фазово-контрастная микроскопия - Этот метод служит для получения контрастных изображений прозрачных и бесцветных объектов, невидимых при обычных методах микроскопирования. Электронная микроскопия -В электронном микроскопе используется поток электронов с более короткими, чем в световом микроскопе, длинами волн.



Главными этапами цитологического и гистологического анализа являются выбор объекта исследования, подготовка его для изучения в микроскопе, применение методов микроскопирования, а также качественный и количественный анализ изображений.

Наиболее часто для изучения используется срез ткани или органа. Гистологические препараты могут изучаться без специальной обработки. Например, приготовленный мазок крови, отпечаток, пленка или срез органа могут сразу рассматриваться под микроскопом. Но вследствие того, что структуры имеют слабый контраст, они плохо выявляются в обычном световом микроскопе и требуется использование специальных микроскопов (фазово-контрастные и др.). Поэтому чаще применяют специально обработанные препараты: фиксированные, заключенные в твердую среду и окрашенные.

Процесс изготовления гистологического препарата для световой и электронной микроскопии включает следующие основные этапы:

1. взятие материала и его фиксация,

2. уплотнение материала,

3. приготовление срезов,

4. окрашивание или контрастирование срезов.

Для световой микроскопии необходим еще один этап - заключение срезов в бальзам или другие прозрачные среды.

Фиксация обеспечивает предотвращение процессов разложения, что способствует сохранению целостности структур органа.Маленький образец либо погружают в фиксатор (спирт, формалин, растворы солей тяжелых металлов, осмиевая кислота, специальные фиксирующие смеси), либо подвергают термической обработке

Уплотнение материала, необходимое для приготовления срезов, производится путем пропитывания предварительно обезвоженного материала парафином, целлоидином, органическими смолами. Более быстрое уплотнение достигается применением метода замораживания кусочков, например, в жидкой углекислоте.

Приготовление срезов происходит на специальных приборах - микротомах (для световой микроскопии) и ультрамикротомах (для электронной микроскопии).

Окрашивание срезов (в световой микроскопии) или напыление их солями металлов (в электронной микроскопии) применяют для увеличения контрастности изображения отдельных структур при рассматривании их в микроскопе. Методы окраски гистологических структур очень разнообразны и выбираются в зависимости от задач исследования.

Гистологические красители (по химической природе) подразделяют на кислые, основные и нейтральные.Употребительный краситель гематоксилин , который окрашивает ядра клеток в фиолетовый цвет, и кислый краситель - эозин , окрашивающий цитоплазму в розово-желтый цвет. Избирательное сродство структур к определенным красителям обусловлено их химическим составом и физическими свойствами. Структуры, хорошо окрашивающиеся кислыми красителями, называются оксифильными, а окрашивающиеся основными -базофильными. Например, цитоплазма клеток чаще всего окрашивается оксифильно, а ядра клеток – окрашиваются базофильно.

Структуры, воспринимающие как кислые, так и основные красители, являются нейтрофильными (гетерофильными). Окрашенные препараты обычно обезвоживают в спиртах возрастающей крепости и просветляют в ксилоле, бензоле, толуоле или некоторых маслах. Для длительного сохранения обезвоженный гистологический срез заключают между предметным и покровным стеклами в канадский бальзам или другие вещества. Готовый гистологический препарат может быть использован для изучения под микроскопом в течение многих лет.

4) . Клетка как структурно-функциональная единица ткани. Определение. Общий план строения эукариотических клеток. Биологические мембраны клетки, их строение, химический состав и основные функции.

Клетка – элементарная структурная, функциональная и генетичес4кая единица в составе всех растительных и животных организмов. Строение эукариотической клетки:

Клетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению.. Клетки всех типов содержат два основных компонента, тесно связанных между собой, -- цитоплазму и ядро. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко. Полужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной.

Собственно тело клетки и ее содержимое отделены от внешней среды или от соседних элементов у многоклеточных организмов плазматической мембраной. Кнаружи от плазматической мембраны расположена клеточная оболочка или стенка, особенно хорошо выраженная у растений. Все внутреннее содержимое клетки, за исключением ядра, носит название цитоплазмы. Цитоплазма эукариотических клеток не однородна по своему строению и составу и включает в себя: гиалоплазму, мембранные и немембранные компоненты. Мембранные органеллы представлены двумя вариантами: одномембранные и двумембранные. К первым относятся органеллы вакуолярной системы – эндоплазматический ретикулум, аппарат Гольджи, лизосомы, пероксисомы и другие специальзированные вакуоли, а также плазматическая мембрана. К двумембранным органеллам относятся митохондрии и пластиды, а также клеточное ядро. К немембранным органеллам принадлежат рибосомы, клеточный центр животных клеток, а также элементы цитоскелета (микротрубочки и микрофиламенты).
Термин гиалоплазма основная плазма или матрикс цитоплазмы, обозначает очень важную часть клетки, ее истинную внутреннюю среду. Гиалоплазма является сложной коллоидной системой, включающей в себя различные биополимеры: белки, нуклеиновые кислоты, полисахариды и т.д. В ней локализованы ферменты, участвующие в синтезе аминокислот, нуклеотидов, жирных кислот, в метаболизме сахаров.. Важнейшая роль гиалоплазмы заключается в том, что эта среда объединяет все клеточные структуры и обеспечивает химическое взаимодействие их друг с другом. Через гиалоплазму осуществляется большая часть внутриклеточных транспортных процессов: перенос аминокислот, жирных кислот, нуклеотидов, сахаров. В гиалоплазме идет постоянный поток ионов к плазматической мембране и от нее, к митохондриям, ядру и вакуолям. гиалоплазме происходит отложение запасных продуктов: гликогена, жира. В цитозоле на расположенных там рибосомах синтезируются белки, транспортируемые в разные участки клетки, а также все белки клеточного ядра, большая часть белков митохондрий и пластид, основные белки пероксисом. Структура клеточных мембран.
Общей чертой всех мембран клетки (плазматической, внутриклеточных и мембранных органоидов) является то, что они представляют собой тонкие (6-10 нм) пласты липопротеидной природы (липиды в комплексе с белками), замкнутые сами на себя

Сущесвуют три важных принципа строения мембраны:
Мембраны не однородны. Мембраны, окружающие внутриклеточные органеллы, и плазматическая мембрана отличаются по составу.Многие компоненты мембран находятся в состоянии непрерывного движения. Мембрана напоминает постоянно меняющуюся мозаикю Компоненты мембран чрезвычайно асимметричны. Между наружным и внутренним слоями мембран имеется различие по относительному количеству и качественному составу липидов. Белки располагаются среди липидов асимметрично и имеют хорошо различимые вне- и внутриклеточные участки.

Важнейшими функциями мембран являются следующие:

Мембраны контролируют состав внутриклеточной среды.

Мембраны обеспечивают и облегчают межклеточную и внутриклеточную передачу информации.

Мембраны обеспечивают образование тканей с помощью межклеточных контактов

Химический состав клетки.
Клетки живых организмов сходны не только по своему строению, но и по химическому составу. Сходство в строении и химическом составе клеток свидетельствует о единстве их происхождения.

По составу входящие в клетку вещества делятся на органические и неорганические.
1.Неорганические вещества.
Вода имеет огромное значение в жизнедеятельности клетки. Многие элементы в клетках содержатся в виде ионов. Чаще всего встречаются катионы: K+, Na+, Ca2+ Mg2+, и анионы: H2PO4-, Cl-, HCO3-.
Минеральные соли (например фосфат кальция) могут входить в состав межклеточного вещества, раковин моллюсков и обеспечивать прочность этих образований.
2. Органические вещества.
Характерны только для живого. Органические соединения представлены в клетке простыми малыми молекулами (аминокислоты, моно- и олигосахариды, жирные кислоты, азотистые основания), и макромолекулами биополимеров (белки, липиды, полисахариды, нуклеиновые кислоты). Молекулы биополимеров состоят из повторяющихся низкомолекулярных соединений (мономеров

Функции клеток. Клетка обладает различными функциями: деление клетки, обмен веществ и

В современной гистологии, цитологии и эмбриологии применяются разнообразные методы исследования, позволяющие всесторонне изучать процессы развития, строения и функции клеток, тканей и органов.

Главными этапами цитологического и гистологического анализа являются выбор объекта исследования, подготовка его для изучения в микроскопе, применение методов микроскопирования, а также качественный и количественный анализ изображений.

Объектами исследования служат живые и мертвые (фиксированные) клетки и ткани, и их изображения, полученные в световых и электронных микроскопах.

Основным объектом исследования являются гистологические препараты , приготовленные из фиксированных структур. Препарат может представлять собой мазок (например, мазок крови, костного мозга, слюны, спинномозговой жидкости и др.),отпечаток (например, селезенки, тимуса, печени), пленку из ткани (например, соединительной или брюшины, плевры, мягкой мозговой оболочки), тонкий срез . Наиболее часто для изучения используется срез ткани или органа. Гистологические препараты могут изучаться без специальной обработки. Например, приготовленный мазок крови, отпечаток, пленка или срез органа могут сразу рассматриваться под микроскопом. Но вследствие того, что структуры имеют слабый контраст, они плохо выявляются в обычном световом микроскопе и требуется использование специальных микроскопов (фазово-контрастные и др.). Поэтому чаще применяют специально обработанные препараты: фиксированные, заключенные в твердую среду и окрашенные.

Процесс изготовления гистологического препарата для световой и электронной микроскопии включает следующие основные этапы:

  • 1. взятие материала и его фиксация,
  • 2. уплотнение материала,
  • 3. приготовление срезов,
  • 4. окрашивание или контрастирование срезов.

Для световой микроскопии необходим еще один этап -- заключение срезов в бальзам или другие прозрачные среды.

Фиксация обеспечивает предотвращение процессов разложения, что способствует сохранению целостности структур. Это достигается тем, что взятый из органа маленький образец либо погружают в фиксатор (спирт, формалин, растворы солей тяжелых металлов, осмиевая кислота, специальные фиксирующие смеси), либо подвергают термической обработке. Под действием фиксатора в тканях и органах происходят сложные физико-химические изменения. Наиболее существенным из них является процесс необратимой коагуляции белков, вследствие которого жизнедеятельность прекращается, а структуры становятся мертвыми, фиксированными. Фиксация приводит к уплотнению и уменьшению объема кусочков, а также к улучшению последующей окраски клеток и тканей.

Уплотнение материала, необходимое для приготовления срезов, производится путем пропитывания предварительно обезвоженного материала парафином, целлоидином, органическими смолами. Более быстрое уплотнение достигается применением метода замораживания кусочков, например, в жидкой углекислоте.

Приготовление срезов происходит на специальных приборах -- микротомах (для световой микроскопии) и ультрамикротомах (для электронной микроскопии). Смотри ссылку - приборы для изготовления срезов .

Окрашивание срезов (в световой микроскопии) или напыление их солями металлов (в электронной микроскопии) применяют для увеличения контрастности изображения отдельных структур при рассматривании их в микроскопе. Методы окраски гистологических структур очень разнообразны и выбираются в зависимости от задач исследования. См. форум гистологические методики .

Гистологические красители (по химической природе) подразделяют на кислые, основные и нейтральные. В качестве примера можно привести наиболее употребительный краситель гематоксилин , который окрашивает ядра клеток в фиолетовый цвет, и кислый краситель -- эозин , окрашивающий цитоплазму в розово-желтый цвет. Избирательное сродство структур к определенным красителям обусловлено их химическим составом и физическими свойствами. Структуры, хорошо окрашивающиеся кислыми красителями, называются оксифильными , а окрашивающиеся основными --базофильными . Например, цитоплазма клеток чаще всего окрашивается оксифильно, а ядра клеток - окрашиваются базофильно.

Структуры, воспринимающие как кислые, так и основные красители, являются нейтрофильными (гетерофильными). Окрашенные препараты обычно обезвоживают в спиртах возрастающей крепости и просветляют в ксилоле, бензоле, толуоле или некоторых маслах. Для длительного сохранения обезвоженный гистологический срез заключают между предметным и покровным стеклами в канадский бальзам или другие вещества. Готовый гистологический препарат может быть использован для изучения под микроскопом в течение многих лет.

Для электронной микроскопии срезы, полученные на ультрамикротоме, помещают на специальные сетки, контрастируют солями урана, свинца и других металлов, после чего просматривают в микроскопе и фотографируют. Полученные микрофотографии служат объектом изучения наряду с гистологическими препаратами.

Гистологические методы исследования

гистологический срез электронная микроскопия клетка

Гистохимические методы

Методы идентификации химических веществ в гистологических срезах. Составной частью Г. м. и. являются цитохимические методы, выявляющие химические вещества в клетках приготовленных мазков и отпечатков. В основе гистохимического исследования лежит соединение принципов и методов химического анализа с принципами и методами морфологического изучения клеток и тканей, используемыми в цитологии и гистологии. Благодаря этому обеспечиваются существенные преимущества в изучении морфофункциональной организации растительных и животных тканей, т.к. выявленное химическое вещество можно связать с определенной тканевой или клеточной структурой, т.е. установить его локализацию. Гистохимические методы находят широкое применение в гистологии, цитологии, эмбриологии, патологической анатомии, экспериментальной и клинической морфологии. С помощью разнообразных методов современной гистохимии можно судить об особенностях функционирования различных тканевых и клеточных структур, определять характер и темп обменных процессов в клетках и тканях, обнаруживать ранние проявления заболеваний.

Непременным условием проведения гистохимического исследования, особенно при выявлении ферментов и других веществ белковой природы, является сохранение структуры тканей и клеток в состоянии, близком тому, какое имеется в живом организме. Это достигается получением срезов свежезамороженных тканей с помощью ножа глубокого охлаждения и криостата, а также использованием лиофильной сушки. Некоторые гистохимические исследования., например выявление углеводных соединений, можно проводить после специальной фиксации тканей и заливки в парафин.

Многие гистохимические исследования являются групповыми, т.е. служат для обнаружения соединений с одинаковыми или близкими свойствами. Другие Г. м. и. строго специфичны и применяются для выявления определенных веществ. Для обнаружения углеводных соединений широко используются методы, основанные на метахромазии - свойстве клеток и тканей окрашиваться в цвет, отличающийся от цвета красителя. Метахромазия обусловлена полимеризацией молекул красителя под влиянием свободных отрицательных зарядов гликозаминогликанов (кислых муко-полисахаридов), присутствующих в ткани.

К высокоспецифичным относятся гистохимические методы выявления ферментов. В их основу положено воздействие фермента на специфический субстрат в присутствии другого вещества, называемого захватывающим агентом (акцептором). Соединяясь с первичным продуктом ферментативной реакции, акцептор образует нерастворимый, обычно окрашенный, осадок - конечный продукт реакции, который маркирует место действия фермента. В качестве акцепторов применяют ионы металлов, соли диазония и другие соединения. Ионы металлов обладают высокой электронной плотностью, поэтому могут быть обнаружены при электронно-микроскопическом исследовании. Это свойство используется в электронной гистохимии. Для определения в тканевом срезе дегидрогеназ применяют соли тетразолия, которые в присутствии специфического субстрата восстанавливаются с превращением в нерастворимые окрашенные продукты - формазаны. Оценка результатов гистохимических реакций, основанная на избирательном окрашивании структур или выпадении окрашенного продукта реакции, может быть не только качественной, но и количественной при использовании цито-спектрофотометрии. Возможна также визуальная полуколичественная оценка интенсивности окрашивания в баллах.

Электронная микроскопия

Электронная микроскопия - совокупность методов исследования с помощью электронных микроскопов микроструктур тел, их локального состава и локализованных на поверхностях или в микрообъемах тел электрических и магнитных полей.

На первом этапе электронная микроскопия применялась в основном для наблюдения биологических объектов, причем для интерпретации снимков использовался лишь адсорбционный контраст. Однако появление метода реплик - отпечатков, сделанных с поверхности, и особенно декорирование их металлами (1940-е -1950-е г.г.) позво-лило успешно изучать неорганические материалы - сколы и изломы кристаллов. Примерно с начала 1950-х годов начинаются интенсивные попытки исследования тонких фольг материалов на просвет. Это стало возможным в результате существенного повышения, до 100кВ, ускоряющего напряжения в электронных микроскопах. С этого периода начинается бурное развитие электронно-микроскопической техники, электронная микроскопия находит все более широкое применение в физическом материаловедении. Одной из важнейших причин этого, по-видимому, является возможность наблюдать в одном эксперименте, как изображение объекта в реальном пространстве, так и его дифракционную картину. Поэтому электронная микроскопия является наиболее подходящим методом исследования структур сложных кристаллических объектов.

Электронную микроскопию можно разделить на 3 группы:

- Просвечивающая электронная микроскопия (Transmission electron microscopy)

ПЭМ является наиболее универсальным классическим методом исследования структурных дефектов кристаллов, используется непосредственно для анализа морфологических особенностей, ориентации дефектов относительно решетки матрицы, определения их размеров. Для работы на просвечивающих электронных микроскопах требуются специально приготовленные тонкие препараты - реплики или фольги, прозрачные для электронов. Наиболее распространены электронные микроскопы с ускоряющим напряжением 100 и 200, 300 и 400 кВ, при этом исследуемые образцы должны иметь различную толщину в зависимости от величины ускоряющего напряжения (для 100 кВ в случае кремния оптимальная толщина 0,3-0,4 мкм, для 200 кВ - от 0,6-0,8мкм до 1мкм). Реплики используются для наблюдения микрорельефа, фактуры поверхности исследуемого образца. Сама реплика - это тонкая пленка какого-то вещества, на которой получают отпечаток микрорельефа поверхности. Это осуществляется, например, путем напыления угольной пленки или нанесения пленки лака или желатина. Метод реплик позволяет получать информацию о структуре поверхности образцов. Фольги - тонкие пленки, которые получают из массивных образцов, причем утонение образца необходимо вести таким образом, чтобы не внести в исследуемую область дополнительных нарушений. Утоненный образец, как и снятую реплику, помещают на специальную сетку с крупными отверстиями и размещают в колонне микроскопа. Именно на фольгах ведутся исследования дефектообразования в кристаллах.

Длина волны электронов с энергией 100 кэВ примерно равна 0,004 нм, а разрешающая способность обычного просвечивающего электронного микроскопа составляет 0,15 нм. В дефектной области наблюдается изменение интенсивности контраста, поскольку в области дефекта или искажена решетка, или наличествует поле упругих напряжений вокруг дислокаций и выделений. При малой деформации решетки матрицы дефект может не выявляться. Кроме того, поскольку просматривается маленький участок при наблюдении дефектов с плотностью менее 108см3, для обнаружения дефекта требуется просмотр большого количества фольг.

Просвечивающая электронная микроскопия высокого разрешения

ВРЭМ практически новый метод исследования, позволяет наблюдать непосредственно кристаллическую решетку материала - получать изображение отдельных плоскостей кристаллической решетки. Наименьшее межплоскостное расстояние, которое удалось разрешить с помощью электронной микроскопии высокого разрешения, -0,1-0,2 нм. Особенностью ВРЭМ является использование специальной оптики нового поколения, а определяющим при формировании изображения является не дифракционный, а абсорбционный контраст.

- Растровая электронная микроскопия

Использование растровой развертки электронного луча по поверхности образца является одним из способов автоматизации измерений. По своим возможностям РЭМ является продолжением оптической микроскопии, расширяющей ее возможности в исследовании топологии поверхностей кристаллических материалов. Разрешение наиболее распространенных РЭМ достигает 5-10 нм при недостижимой для других видов микроскопов глубине резкости 0,6-0,8 мм, причем при изучении топологии поверхности вполне достаточно использование низковольтных РЭМ с диаметром пучка электронов 10 мкм. Обычно используют пучок электронов с энергией 10-30 кэВ, хотя в отдельных случаях могут использоваться электроны с энергией в несколько сотен эВ. В РЭМ изображение объекта формируется последовательно по точкам и является результатом взаимодействия электронного пучка (зонда) с поверхностью образца. Каждая точка образца последовательно облучается сфокусированным электронным пучком, который перемещается по исследуемой поверхности подобно сканированию электронного луча в телевизионных системах. При взаимодействии электронов зонда с веществом возникают ответные сигналы различной физической природы, которые используются для синхронного построения изображения на экране монитора. Для формирования изображения не используется электронно-оптическая система, изменение масштабов изображения осуществляется радиотехническими средствами. Поэтому растровые электронные микроскопы принципиально отличаются от микроскопов, как дифракционных приборов, в обычном понимании этого термина. По существу РЭМ - это телевизионный микроскоп.

Ультрафиолетовая микроскопия

Ультрафиолетовая микроскопия - микроскопия при которой объект освещают ультрафиолетовыми лучами, а его видимое изображение получают с помощью люминесцентного экрана или посредством микрофотографии; применяется для повышения контрастности изображения, особенно внутриклеточных структур.

Метод наблюдения в ультрафиолетовых (УФ) лучах позволяет увеличить предель-ную разрешающую способность микроскопа, т. е. понизить его предельное разреше-ние, которое зависит от длины волны λ применяемого излучения (для используемых в микроскопии УФ лучей λ = 400-250 нм, тогда как для видимого света λ = 700-400 нм). Но главным образом этот метод расширяет возможности микроскопических ис-следований за счёт того, что частицы многих веществ, прозрачные в видимом свете, сильно поглощают УФ излучение определённых длин волн и, следовательно, легко различимы в УФ изображениях. Характерными спектрами поглощения в УФ области обладает, например, ряд веществ, содержащихся в растительных и животных клетках (Пуриновые основания, пиримидиновые основания, большинство витаминов (См. Витамины), ароматические Аминокислоты, некоторые Липиды, Тироксин и др.); это обусловило широкое применение УФ микроскопии в качестве одного из методов цитохимического анализа.

Ультрафиолетовые лучи невидимы для человеческого глаза. Поэтому изображения в УФ микроскопии регистрируют либо фотографически, либо с помощью электроннооптического преобразователя или люминесцирующего экрана. Распространён следующий способ цветового представления таких изображений. Препарат фотографируется в трёх длинах волн УФ области спектра; каждый из полученных негативов освещается видимым светом определённого цвета (например, синим, зелёным и красным), и все они одновременно проектируются на один экран. В результате на экране создаётся цветное изображение объекта в условных цветах, зависящих от поглощающей способности препарата в ультрафиолете.

Люминесцентная микроскопия

Метод исследования в свете люминесценции (люминесцентная микроскопия, или флуоресцентная микроскопия) заключается в наблюдении под микроскопом зелено-оранжевого свечения микрообъектов, которое возникает при их освещении сине-фиолетовым светом или не видимыми глазом ультрафиолетовыми лучами. При этом методе в оптическую схему микроскопа вводятся два Светофильтра. Первый из них помещают перед конденсором; он пропускает от источника-осветителя излучение только тех длин волн, которые возбуждают люминесценцию либо самого объекта (собственная люминесценция), либо специальных красителей, введённых в препарат и поглощённых его частицами (вторичная люминесценция). Второй светофильтр, установленный после объектива, пропускает к глазу наблюдателя (или на фоточувствительный слой) только свет люминесценции. В люминесцентной микроскопии используют как освещение препаратов сверху (через объектив, который в этом случае служит и конденсором), так и снизу, через обычный конденсор. Наблюдение при освещении сверху иногда называют «люминесцентной микроскопией в отражённом свете» (этот термин условен - возбуждение свечения препарата не является простым отражением света); его часто сочетают с наблюдением по фазово-контрастному методу в проходящем свете.

Метод широко применяется в микробиологии, вирусологии, гистологии, цитологии, в пищевой промышленности, при исследовании почв, в микрохимическом анализе, в дефектоскопии. Обилие и разнообразие применений связаны с чрезвычайно высокой цветовой чувствительностью глаза и высокой контрастностью изображения самосветящегося объекта на тёмном нелюминесцирующем фоне, а также ценностью информации о составе и свойствах исследуемых веществ, которую можно получить, зная интенсивность и спектральный состав их люминесцентного излучения.

Фазово-контрастная микроскопия

Метод фазового контраста служит для получения изображений прозрачных и бесцветных объектов, невидимых при наблюдении по методу светлого поля. К числу таких объектов относятся, например, живые неокрашенные животные ткани. Метод основан на том, что даже при очень малых различиях в показателях преломления разных элементов препарата световая волна, проходящая через них, претерпевает разные изменения по фазе (приобретает т. н. фазовый рельеф). Эти фазовые измене-ния, не воспринимаемые непосредственно ни глазом, ни фотопластинкой, с помощью специального оптического устройства преобразуются в изменения амплитуды свето-вой волны, т. е. в изменения яркости («амплитудный рельеф»), которые уже различи-мы глазом или фиксируются на фоточувствительном слое. Другими словами, в полу-чаемом видимом изображении распределение яркостей (амплитуд) воспроизводит фазовый рельеф. Такое изображение называется фазово-контрастным. В типичной для этого метода схеме в переднем фокусе конденсора 3 устанавливается апертурная диафрагма 2, отверстие которой имеет форму кольца. Её изображение возникает вблизи заднего фокуса объектива 5, и там же устанавливается т. н. фазовая пластинка 6, на поверхности которой имеется кольцевой выступ или кольцевая канавка, называемая фазовым кольцом. Фазовая пластинка может быть помещена и не в фокусе объектива (часто фазовое кольцо наносят прямо на поверхность одной из линз объектива), но в любом случае неотклонённые в препарате 4 лучи от осветителя 1, дающие изображение диафрагмы 2, должны полностью проходить через фазовое кольцо, кото-рое значительно ослабляет их (его делают поглощающим) и изменяет их фазу на λ/4 (λ - длина волны света). В то же время лучи, даже ненамного отклоненные (рассеянные) в препарате, проходят через фазовую пластинку, минуя фазовое кольцо (штриховые линии), и не претерпевают дополнительного сдвига фазы.

С учётом фазового сдвига в материале препарата полная разность фаз между отклоненными и неотклонёнными лучами оказывается близкой к 0 или λ/2, и в результате интерференции света (См. Интерференция света) в плоскости изображения 4" препарата 4 они заметно усиливают или ослабляют друг друга, давая контрастное изображение структуры препарата. Отклоненные лучи имеют значительно меньшую амплитуду по сравнению с неотклонёнными, поэтому ослабление основного пучка в фазовом кольце, сближая значения амплитуд, также приводит к большей контрастности изображения.

Метод позволяет различать малые элементы структуры, чрезвычайно слабо контрастные в методе светлого поля.

Прозрачные частицы, сравнительно не малые по размерам, рассеивают лучи света на столь небольшие углы, что эти лучи проходят вместе с неотклонёнными через фазовое кольцо. Для подобных частиц фазово-контрастный эффект имеет место только вблизи их контуров, где происходит сильное рассеяние.

Поляризационная микроскопия

Микроскопия, основанная на способности разных компонентов клеток и тканей преломлять поляризованные лучи. В поляризационном микроскопе можно исследовать объекты, которым свойственно двойное лучепреломление.

Радиоавтография

Метод изучения распределения радиоактивных веществ (изотопов) в исследуемом объекте или соединениях. Заключается в наложении на объект чувствительной к радиоактивным излучениям фотоэмульсии и получении отпечатка, фиксирующего расположение радиоактивных изотопов.

Культура клеток и тканей вне организма

Метод сохранения в жизнеспособном состоянии клеток, участков тканей, органов или их частей вне организма. Во 2-й пол. 19 в. развитие микробиологии, прежде всего медицинской (необходимость выделения и изучения микробов, вызывающих инфекционные болезни), а также производств, основанных на процессах брожения, привело к созданию методов культивирования клеток бактерий, дрожжей и других микроорганизмов, т.е. методов их выделения, выращивания, размножения и сохранения в искусственных условиях. Были разработаны составы жидких и твёрдых питательных сред, методы, обеспечивающие их стерильность, способы выращивания чистых культур, состоящих из клеток одного вида, и т.д. К сер. 20 в. было освоено культивирование микроорганизмов в промышленных масштабах.

Первые опыты по выращиванию клеток и тканей животных вне организма были сделаны в нач. 20 в. Дальнейшее совершенствование метода шло параллельно успехам цитологии, биохимии, генетики, эмбриологии, молекулярной биологии. Его возможности возросли после того, как научились получать изолированные клетки из различных животных тканей (путём их обработки специальными ферментами, растворяющими межклеточное вещество и разрушающими межклеточные контакты) и выяснили потребности разных клеток в гормонах, факторах роста и др. веществах, вносимых в искусственные питательные среды. Очевидные преимущества работы с генетически однородными клетками и тканями в контролируемых условиях вне организма по сравнению с проведением исследований на целых организмах сделали этот метод одним из наиболее универсальных в биологии. Столь же плодотворным оказалось его применение в медицине и при решении ряда задач сельского хозяйства и биотехнологии.

Клеточные и тканевые культуры использовались для изучения закономерностей митоза и числа клеточных циклов (делений) у клеток разных типов и выяснения в связи с этим «запрограммированности» процесса старения, для изучения механизмов клеточной дифференцировки, формирования специализированных тканей и органов, а также (при совместном культивировании) влияния друг на друга клеток разных типов. Культура клеток и тканей растений появилась позднее - в 1958 г., но уже всего через 6 лет из единственной клетки, извлечённой из корня моркови, удалось в условиях культуры вырастить целое растение с дифференцированными тканями и органами. Это направление широко применяется в селекции и биотехнологии.

Клеточные и тканевые культуры позволяют исследовать такие важные для медицины проблемы, как перерождение нормальных клеток в опухолевые, всесторонне изучать их свойства, чувствительность клеток к физическим и химическим факторам, в т.ч. к лекарствам, а также определять потенциальную мутагенность и канцерогенности этих факторов, т.е. их способность вызывать мутации и опухоли. Разработка методов дли-тельного культивирования позволяет формировать банки клеточных линий, обладающих определёнными генетическими и биохимическими свойствами. На этой основе создаются методы криоконсервации (от греч. «криос» - холод) - сохранение в условиях глубокого охлаждения клеток, тканей и органов для трансплантации (пересадки), в качестве резервного генофонда редких и исчезающих биологических видов, а также для других целей. С кон. 20 в. стали возникать банки, в которых хранятся замороженные стволовые клетки, используемые для лечения самых различных болезней и травм.

Клеточные культуры служат также удобными объектами для изучения тканевой несовместимости и других иммунных реакций. Они используются в диагностике вирусов и для получения вакцин. Таким образом, культура клеток и тканей применяется для решения как фундаментальных теоретических проблем (таких как клеточная дифференцировка и др.), так и различных практических задач, особенно в области медицины. Этот метод - неотъемлемая составная часть генной инженерии, клеточной инженерии, клонирования и других направлений экспериментальной биологии.

Прижизненная окраска

Явление окрашивания тканей при жизни организма путем введения в него различных красящих веществ. Красящие вещества должны быть не ядовиты для организма и обладать свойством проникать в ткани, а также удерживаться в них в течении определённого времени. Для окраски применяют кислые или основные краски.

Результаты, получаемые с кислыми красками, зависят не столько от их химического состава, сколько от степени дисперсности и других физико-химических свойств. Высоко дисперсные краски не дают окрашивания, а пропитывают диффузно ткани и быстро выделяются из организма. Поэтому для окрашивания применяют, преимущественно, коллоидные или полуколлоидные красящие вещества (Trypanblau, Isamin-blau), литиевый кармин и др. Всем этим краскам свойственна отрицательная зарядка частиц, медленность диффузии, нерастворимость в липоидах. После введения кислых витальных красок в организм наступает диффузное пропитывание ими основного вещества, а затем накопление краски в протоплазме определенных клеток организма в виде зернистых отложений. Так красятся лишь живые клетки (ядра при этом не окрашиваются). Мертвые клетки прокрашиваются очень резко диффузно, при чем красятся также и их ядра. Поэтому метод В. о. имеет большое значение для отличия живых клеток от мертвых. Далее, при помощи витальной окраски кислыми красками удается проследить процесс распределения в организме многих веществ, откладывающихся в тканях одинаковым образом с упомянутыми красками. Сюда относятся: желчные пигменты, коллоидные металлы и др. лекарственные вещества коллоидного характера, липоиды, а также, по-видимому, белковые тела, далее - различные бактерии, различные взвешенные частицы экзогенного происхождения, некоторые клеточные элементы и продукты их распада. Главным местом, где происходит отложение кислых витальных красок в зернистой форме, а ташке всех упомянутых сейчас веществ, являются клетки. Особенно характерно для окрашивания клеток кислыми красками то, что при этом никогда не прокрашиваются составные структурные части протоплазмы клеток. Появляющиеся в клетках окрашенные зерна образуются вследствие выпадения краски из растворенного состояния после проникания ее в клетки. Впрочем, кислыми красками пропитываются в известной степени также и некоторые преформированные внутриклеточные включения, особенно белкового характера. При окрашивании в клетках отлаживаются краски в зернистой формы. Механизм образования зерен краски в клетках объясняется различно: по одним взглядам, в клетках отмечается постепенное накопление краски внутри вновь образующихся вакуолей, где происходит постепенное понижение дисперсности краски и, наконец, ее выпадение, при чем имеет значение действие электролитов. Другие придают главное значение в образовании внутриклеточных зерен краски явлениям адсорпции. Далее, имеются указания, что краска проникает в клетки всегда в соединении с белками плазмы, т. о., содержание последних в крови имеет большое значение. Затем, в процессе В. о. кислыми, а также основными красками некоторую роль играет, повидимому, концентрация Н-ионов в тканях. Кроме клеток рет.-энд. системы, зернистые отложения кислых витальных красок образуются также в эпителии извитых канальцев почек (через к-рые, гл. обр., идет выделение этих красок), а также, хотя далеко не у всех животных, в клетках печени. При введении в организм больших количеств нек-рых витальных красок (напр., Trypanblau) удается получить зернистые отложения краски также и в других клеточных элементах, в особенности в эпителии энто-дермального происхождения (v. Mollendorff, Гессе, Глазунов и др.), в различных клетках промежуточной ткани, в клетках многих органов внутренней секреции, в эпителии сосудистых сплетений мозга и пр. Наконец, удавалось получить витальное окрашивание кислыми красками и элементов центральной нервной системы (Рахманов, Behnsen, Мандельштам и др.). В общем, на результат прижизненной окраски, кроме свойств красящего вещества, оказывают влияние также и способ введения краски, дозировка ее и, наконец, состояние самих тканей, особенно степень снабжения их кровью. Интересные результаты были получены при внутривенных введениях неядовитых кислых красок, при чем прослежена быстрота исчезновения их из крови (Оку-нев, Seyderhelm) и дальнейшая судьба в организме (Аничков, Теплов, Каган). При диффузном распределении краски в тканях особенно резко диффузно прокрашиваются стенки сосудов (Петров). При подкожном и внутрибрюшинном введении кислых витальных красок также удалось получить, но более медленно, общее окрашивание животных. При этом особенно резко окрашиваются элементы тканей на месте введения краски. Имеются указания, что при отложении зерен краски в клетках важное участие принимает ретикулярный аппарат клеток (Golgi), т. к. появление зерен происходит сначала всегда в области этого аппарата (работы Насонова, Хлопина, Ясвой-на). Высказывавшиеся прежде мнения, что при окраске кислыми красками прокрашиваются составные части клеточной протоплазмы, напр., митохондрии (Чашин, Stec-kelmacher), в наст, время б. ч. оставлены.- Кроме введения кислых витальных красок в организм, важное значение имеет метод культивирования тканей в плазме, содержащей данные краски-особенно Trypanblau (Hofmann, Максимов, Vetteri, Хлопин). При этом удается наблюдать В. о. клеток и изучать их и в живом состоянии. - Наконец, важен метод исследования при помощи прижизненной окраски живых тканей непосредственно под микроскопом, как это удалось на нек-рых объектах (легкие, мочевой пузырь, брыжжейка амфибий), при чем могут быть применены даже сильные иммерсионные объективы (работы Garmus"a, Von-willer"a, Венслава). Прижизненной окраски тканей эмбрионов при введении кислых красок в материнский организм не наблюдается, т. к. плацента не пропускает краски из крови матери. Для окраски тканей эмбрионов применяется введение красок в полость амниона или, у птиц, впрыскивание, например, в стенку аллонтоиса. Коллоидная краска Kongorot предложена специально для элективной прижизненной окраски амилоида (Bennhold); впрочем, такие же результаты дает и краска Trypanblau (Гер-ценберг). Несколько особняком стоит применение витальных красок для В. о. костей. К таким краскам относятся производные краппа, красящим началом которого является ализарин. Окраска костей основана на образовании соединения ализарина с кальцием, при чем окрашиваются лишь молодые растущие кости (Lieberkuhn, Fischel, Gottlieb). Нек-рые продукты, образующиеся в организме при пат. изменениях НЬ, дают такую же окраску костей, как ализарин. Сюда относится гематопорфирин, который, при избыточном образовании в организме, откладывается в костях, окрашивая весь скелет в резко коричневый цвет (Е. Fraenkel). Несколько особый метод прижизненной окраски представляет собой т.н. витальная хемоскопия по Карчагу (Karczag). Этот метод основывается на способности многих красок группы трифенилметана (например, кислый фуксин, LieMgrim, Wasser-blau) под влиянием нек-рых воздействий (напр., света, тепла, восстановляющих веществ и пр.) переходить в бесцветные карбиноловые соединения. После впрыскивания этих красок исследуют различные ткани, обнаруживая в них краску действием кислоты, к-рая «регенерирует> краску. В. о. основными красками. В отличие от кислых красок, основные окрашивают предсуществующие структурные составные части клеток. Предполагают, что при этом происходит осаждение краски кислыми коллоидами клеток (v. Mollendorff). В особенности резкое осаждение краски происходит при полной ее нейтрализации при избытке краски или кислого коллоида получаются различные цветовые оттенки окрашенных элементов, на чем основаны нек-рые методы определения концентрации Н-ионов в клетках. Основные краски обычно быстрее проникают в клетки и скорее осаждаются, чем кислые. Окрашивая структурные составные части клеток, они дают одинаковые результаты на живых и переживающих объектах. Поэтому они не могут быть вполне применены для отличия живых клеток от отмирающих в той степени, как кислые краски. В общем, для возникновения В. о. основными красками имеют значение следующие условия: диффузионная способность красок, от к-рой зависит быстрота окрашивания, растворимость в липоидах, способность краски к восстановлению, осаждаемость кислыми коллоидами и, наконец, содержание Н-ионов в тканях. Особенное значение придавали растворимости основных красок в липоидах. Скорость возникновения окраски в значительной степени ставили в зависимость от этого свойства, т. к. оно облегчает проникание краски в клетку через поверхностный липоидный слой (Over-ton, Hober, Nierenstein). Однако, когда выяснилось, что в клетки проникают также и нерастворимые в липоидах краски, указанный сейчас взгляд был сильно поколеблен. Наряду с физической проницаемостью клеток был выдвинут взгляд об особой их физиологической проницаемости (НбЬег). В наст, время значение липоидных компонентов клетки выступает в новом освещении в смысле возможности накопления краски на разделе липоид-протоплазма, вследствие способности красок понижать поверхностное натяжение на этом разделе (Окунев). Моментом, препятствующим возникновению В. о. основными красками, является свойство последних переходить путем восстановления в тканях в бесцветные соединения. Этим свойством красок пользуются также для определения мест наибольшего потребления кислорода в тканях (Ehrlich, Unna и др.). Составные части клеток, окрашивающиеся витально основными красками, представляют собой прежде всего различные включения. В этом отношении действие основных красок частью сходно с действием кислых. Далее, прижизненно окрашиваются основными красками секреторные зерна, желтковые пластинки, Нисслевская зернистость в нервных клетках, пищеварительные вакуоли у простейших и пр. Наблюдавшаяся Арнольдом (Arnold) окраска клеточных зернистостей основными красками относится не к пластосомам, а, гл. обр., также к секреторным зернистостям и включениям. Впрочем, при действии нек-рых основных красок (Janusgri"m) удается, особенно в культурах тканей, получить окраску пластосом. Т. о., основные витальные краски окрашивают все же, гл. обр., парапластические субстанции, т.е. такие, к-рые не принимают активного участия в клеточной жизни. Из наиболее употребительных для В. о. основных красок следует назвать Neutral-rot, Nilblausulfat, Methylenblau, Toluidin-falau, Thionin, Bismarekbraun, Krystallvio-iett и др. Все эти краски применяются обыч- но в сильно разведенных растворах. Особенно хорошие результаты дают Neutral-rot, Nilblausulfat и Methylenblau (многочисленные результаты окраски основными красками различных животных, начиная с простейших, см. в работах Nierenstein"a, Vonwiller"a, Loman"a, Stelanski, Fischel"H, Хлопина и др.). Весьма трудно во многих случаях отличить-имеет ли окраска какой-либо основной краской витальный или суп-равитальный характер. Обычно суправи-тальная окраска получается более резкая, при чем окрашиваются также и структурные элементы ядер. Представителем суправи-тальной окраски считается особенно окрашивание (неправильно назыв. «прижизненным») нервных волокон и окончаний по Эрлиху (подробнее об этом методе см. в работах Догеля и его школы). Обычно исследование тканей при окраске основными красками производится без фиксации, на расщипах тканей или на прозрачных перепонках, особенно у хладнокровных (см. работы Garmus"a, Vonwiller"a, Венслава). Далее, применяется также и метод выращивания тканей на плазме с прибавкой основных красок в весьма слабых разведениях (см. работы Vetter"a, R. Erdmann"a, Хлопина). Попытки фиксации основных красок в тканях не дали хороших результатов. Специального упоминания заслуживает прижизненная окраска жира, для чего применяется, гл. обр., краска Sudan III. Последний вводят в растворе в растительном масле через желудок или примешивают его в виде порошка к пище. В результате получается окраска всех жировых депо организма. Механизм распределения краски и проникания ее в жировые депо еще мало изучен (см. работы JakobsthaFfl, M. В. Schmidt"a и др.).

Методы исследования в гистологии, цитологии и эмбриологии Часть I

Ивановская государственная медицинская академия
Кафедра гистологии, эмбриологии и цитологии
Методы исследования в
гистологии, цитологии и
эмбриологии
Часть I
к.м.н., старший преподаватель М.Р. Гринева
д.м.н., профессор С.Ю. Виноградов
д.м.н., профессор С.В. Диндяев
далееВведение
Методы исследования живых клеток и тканей
Виды гистологических препаратов фиксированных клеток
Изготовление гистологического препарата
Гистологический препарат
Взятие материала
Фиксация материала
Уплотнение материала
Приготовление срезов
Виды микротомов
Окрашивание срезов
Методы окрашивания
Типы красителей
Заключение срезов в консервирующую среду
Методы микроскопии
Световая микроскопия
Устройство светового микроскопа
Техника микроскопирования
Темнопольная микроскопия
Поляризационная микроскопия
Фазово-контрастная микроскопия
Флюоресцентная (люминесцентная) микроскопия
Электронная микроскопия
Рекомендуемая литература
назад
далее

Введение

В современной гистологии, цитологии и эмбриологии применяются
разнообразные методы исследования, позволяющие всесторонне изучать
процессы развития, строения и функции клеток, тканей и органов.
Главными этапами цитологического и гистологического анализа являются
выбор объекта исследования
подготовка его к микроскопированию
применение методов микроскопирования
качественный и количественный анализ изображения
Объектами
исследования
служат
гистологические
изготовленные из живых или фиксированных клеток.
препараты,
оглавление далее

Методы исследования живых клеток и тканей

Изучение живых клеток и тканей позволяет получить наиболее полную
информацию об их жизнедеятельности – проследить процессы движения,
деления, разрушения, роста, дифференцировки и взаимодействия клеток,
продолжительность их клеточного цикла, реактивные изменения в ответ на
действие различных факторов.
Методы
Прижизненное
в организме (in vivo)
Вживление прозрачных камер
Прижизненная микроскопия
Трансплантация
Прижизненное в культуре
клеток и тканей (in vitro)
Суспензионные культуры
Монослойные культуры
Культивирование in vivo
назад
оглавление далее

Виды гистологических препаратов фиксированных клеток

Срез
тонкие (толщина
более 1 мкм)
полутонкие
(толщина менее
1 мкм)
ультратонкие
(толщина менее
0,1 мкм)
Мазок
крови
красного
костного
мозга
спинномозговой
жидкости
слюны
влагалищный
и др.
Отпечаток
селезенки
тимуса
печени
слизистой
оболочки
мочевого
пузыря
слизистой
оболочки
щеки
и др.
назад
Пленка
брюшины
плевры
мягкой мозговой
оболочки
соединительной
ткани
и др.
оглавление далее

Изготовление гистологического препарата

назад
оглавление далее

Гистологический препарат

Гистологические препараты, как правило, представляют собой срезы (толщиной
5-15 мкм) органов, тканей или клеток, окрашенные специальными гистологическими
красителями.
Гистологический препарат должен отвечать следующим требованиям:
сохранять прижизненное состояние структур;
быть достаточно тонким и прозрачным для изучения его под
микроскопом в проходящем свете;
быть контрастным, то есть изучаемые структуры должны под
микроскопом четко определяться;
препараты для световой микроскопии должны долго сохраняться и
использоваться для повторного изучения.
Процесс изготовления гистологического препарата включает включает следующие
основные этапы:
1. Взятие и фиксация материала
2. Уплотнение материала
3. Приготовление срезов
4. Окрашивание срезов
5. Заключение срезов в прозрачную среду
назад оглавление далее

Взятие материала

Изготовление гистологического препарата производится из органов и тканей,
полученных несколькими путями:
биопсия (пунктат),
операционным путем,
секционный (трупный) материал,
экспериментальный
При этом должны учитываться следующие моменты:
1. Забор материала должен проводиться как можно раньше после смерти
или забоя экспериментального животного, а при возможности от живого
объекта (биопсия), чтобы лучше сохранились структуры клетки, ткани или
органа.
2. Забор кусочков должен производиться острым инструментом, чтобы не
травмировать ткани.
3. Толщина кусочка не должна превышать 5 мм, чтобы фиксирующий
раствор мог проникнуть в толщу кусочка.
4. Обязательно
производится
маркировка
кусочка
(указывается
наименование органа, номер животного или фамилия человека, дата
забора и так далее).
назад оглавление далее

Фиксация материала

Цель фиксации материала – сохранение прижизненного морфологию
клеток и тканей, предотвращение аутолиза и посмертных изменений.
Фиксатор вызывает денатурацию белка и стабилизацию липидов и тем
самым приостанавливает обменные процессы и сохраняет структуры в их
прижизненном состоянии.
Фиксация достигается чаще всего погружением кусочка в фиксирующие
жидкости, которые могут быть простыми (формалин, спирты, глутаровый
альдегид, ацетон) и сложными (раствор Карнуа, фиксатор Ценкера и др.).
Фиксация может достигаться также замораживанием (охлаждением в струе
СО2, жидким азотом и др.).
Подбор фиксаторов и продолжительность фиксации индивидуален для
различных органов и тканей и обычно колеблется от 2 до 24 часов.
назад оглавление далее

Уплотнение материала

Целью этого этапа является придание исследуемому материалу такой
плотности, которая позволит получить тонкие срезы необходимой толщины.
Этого достигают двумя способами:
Замораживание образца с последующей резкой на замораживающем
микротоме.
Пропитывание уплотняющими средами (парафин, эпоксидные смолы и др.)
Основные этапы парафиновой проводки:
Промывка материала проточной водопроводной водой для удаления
фиксатора.
Обезвоживание (дегидратация) материала в спиртах увеличива-ющейся
концентрации (70, 80, 90, 96, абсолютный – 100%).
Удаление спирта и подготовка материала к пропитыванию парафином
обработкой растворителями парафина (ксилол и др.) и смесью парафина и
ксилола (при температуре 37°С)
Заливка в чистый расплавленный парафин (при температуре 56°С).
Охлаждение парафина и формирование блоков.
назад оглавление далее

Приготовление срезов

Для изготовления тонких срезов заданной толщины в настоящее время
используются специальные приборы – микротомы (для световой микроскопии)
и ультрамикротомы (для электронной микроскопии).
Специальные ножи микротомов позволяют получить срезы толщиной:
3-8 мкм из материала, залитого в парафин,
10-25 мкм из материала, замороженного в камере микротома-криостата
0,08-0,1 мкм из материала, подготовленного для электронной микроскопии
Полученные срезы помещают на предметные стекла (для световой
микроскопии) или монтируются на специальные сеточки (для электронной
микроскопии).
назад оглавление далее

Виды микротомов

санный
ротационный
криостатный
замораживающий
для экспрессдиагностики,
гистохимии
вибротом
изготовление
парафиновых
срезов
изготовление
серийных
парафиновых
срезов
изготовление
срезов при
температуре
-20°С и ниже
для гистохимии
и иммуноцитохимии
изготовление
срезов фиксированных и
нефиксированных тканей
назад оглавление далее

Окрашивание срезов

Клеточные
структуры
без
специальной
обработки,
как
правило,
не
различимы даже при большом увеличении микроскопа. Они бесцветны и
прозрачны.
Для выявления тканевых компонентов, отдельных клеток, внутриклеточных
структур используют красители – вещества с высоким сродством к различным
компонентам ткани и с определенными цветооптическими свойствами.
Способность тканевых компонентов по-разному окрашиваться зависит от
кислотно-основных (щелочных) свойств веществ, входящих в их состав.
Перед окрашиванием срезы депарафинируют, проводя последовательно
через растворитель парафина (ксилол), спирты нисходящей концентрации (100,
96, 90, 80, 70%) и помещают в воду.
назад оглавление далее

Методы окрашивания

Общегистологические
Специальные
Гистохимические
выявление
общего плана
строения
клеток, тканей,
органов
выявление
специализированных
структур в
клетках и
тканях
анализ
химического
состава клеток
и
межклеточного
вещества
назад
Импрегнация
выявление
специализированных
структур в
клетках и
тканях
оглавление
далее

Импрегнация

Метод выявления тканевых структур путем пропитывания объектов
гистологического исследования растворами солей тяжелых и драгоценных
металлов (например, азотнокислое серебро (серебрение), кобальт, хлористое
золото (золочение), кадмий, осмиевым ангидрид и др.).
Участки ткани, в которых происходит осаждение солей металлов на
гистологических структурах, приобретают черный или бурый цвет в
зависимости от количества и свойств восстановленного металла.
Периферический нерв
(поперечный срез).
Импрегнация оксидом
осмия
Мультиполярный нейрон.
Импрегнация нитратом серебра
Мультиполярные нейроны.
Импрегнация нитратом серебра
назад оглавление далее

Типы общегистологических красителей

основные
основания,
связываясь с
кислотными
соединениями
гистологических
структур, вызывают
обычно их
окрашивание в синефиолетовые цвета
базофилия
метахромазия
нейтральные
кислые
содержат как
основные, так и
кислые красящие
компоненты
соединяясь с
основными
(щелочными)
соединениями
гистологических
структур,
окрашивают их в
цвета красителя
нейтрофилия
оксифилия
назад
оглавление далее

Базофилия

Основные (щелочные) красители активно связываются со структурами, которые
содержат кислоты и несут отрицательный заряд – например, ДНК, РНК.
К ним, в частности, относятся гематоксилин, толуидиновый синий, тионин,
метиленовый синий, азуры и др.
Способность окрашиваться основными (щелочными) красителями называется
базофилией (от греч. basis – основа и philia – любовь).
Поэтому структуры, связывающие эти красители, называются базофильными.
В клетке базофилией обладает ядро (вследствие высокого содержания ДНК и РНК),
иногда цитоплазма (при высоком содержании в ней рибосом или гранулярной ЭПС).
Базофильно может окрашиваться межклеточное вещество некоторых тканей – например,
хрящевой.
Базофилия ядра
нейтрофильного гранулоцита.

Увеличение: х630.
назад
оглавление далее

Метахромазия

Метахромазия (от греч. meta – изменение и chroma – цвет, краска) – изменение цвета
некоторых основных красителей при их связывании со структурами, обладающими
специфическими химическими свойствами (обычно высокой концентрацией
сульфатированных гликозаминогликанов).
К таким красителям относятся толуидиновый синий, азур II, тионин и др.
Способность метахроматически окрашиваться обладают гранулы базофильных
лейкоцитов, тучных клеток.
Указанные красители окрашивают другие базофильные структуры в тех же тканях в
обычный свойственный им цвет, т.е. ортохроматически (от греч. orthos – правильный и
chroma – краска).
Метахромазия зернистости
базофильного гранулоцита.
Окраска по Романовскому-Гимзе.
Увеличение: х630.
назад оглавление далее

Оксифилия

Кислые красители связываются со структурами, имеющими положительный заряд –
например, белки.
К таким красителям относятся эозин, оранж G, эритрозин, пикриновая кислота и др.
Способность окрашиваться кислыми красителями называется оксифилией, или
ацидофилией (от греч. oxys или лат. acidus – кислый и греч. philia – любовь).
Структуры, связывающие
ацидофильными.
эти
красители,
называются
оксифильными
или
Оксифилия свойственна цитоплазме клеток (особенно при высоком содержании в
ней митохондрий и некоторых белковых секреторных гранул), эритроцитам (благодаря
высокой концентрации в них гемоглобина). Оксифильно окрашивается цитоплазма
кардиомиоцитов, мышечных волокон скелетной мускулатуры, некоторые компоненты
межклеточного вещества (например, коллагеновые волокна).
Оксифилия зернистости
эозинофильного гранулоцита.
Окраска по Романовскому-Гимзе.
Увеличение: х630.
назад
оглавление далее

Нейтрофилия

Нейтрофилия
(от
лат.
neutrum

ни
тот,
ни
другой,
и
philia - предрасположение, любовь) – способность гистологических структур
окрашиваться и кислыми, и основными красителями.
Нейтрофилия зернистости
нейтрофильного гранулоцита.
Окраска по Романовскому-Гимзе.
Увеличение: х630.
назад
оглавление далее

Заключение срезов в консервирующую среду

Окрашенные гистологические препараты обезвоживаются в спиртах
восходящей концентрации (70, 80, 90, 96, абсолютный – 100%) и
просветвляются в ксилоле, бензоле, толуоле или некоторых маслах.
Для длительного хранения обезвоженный гистологический срез заключают
(монтируют) в прозрачную консервирующую среду (смолу хвойных деревьев –
канадский, пихтовый бальзам, а также в синтетические среды).
На постоянном гистологическом препарате срез ткани располагается на
предметном стекле, сверху закрыт покровным стеклом. Между стеклами
(предметным и покровным) находится заливочная среда, обладающая
коэффициентом преломления световых лучей, близким к таковому у стекла.
назад оглавление далее

Методы микроскопии

оглавление далее

Методы микроскопии

Оптическая
Световая
Поляризационная
Темнопольная
Фазовоконтрастная
Электронная
Просвечивающая
(трансмиссионная)
Сканирующая
(растровая)
Флюоресцентная
(люминесцентная)
назад оглавление далее

Световая микроскопия

Изучение гистологического препарата осуществляется в проходящем свете
с помощью светового микроскопа.
Источник света естественный или искусственный (различные лампы). Свет
собирается в конденсор и далее направляется через препарат в объектив.
Окуляр дополнительно увеличивает это изображение.
Качество
изображения
(четкость)
определяется
разрешающей
способностью микроскопа, т.е. минимальным (разрешающим) расстоянием,
на котором оптика микроскопа позволяет различить раздельно две близко
расположенные точки. Эта величина пропорциональна длине световой волны и
для обычного светового микроскопа равна приблизительно 0,2 мкм.
Чем меньше разрешающее расстояние, тем выше разрешающая способность
микроскопа и тем более мелкие объекты можно исследовать.
Увеличение микроскопа – это соотношение между истинными размерами
исследуемого объекта и размерами его изображения, получаемого с помощью
микроскопа. Ориентировочно оно оценивается как произведение увеличений
объектива и окуляра и может достигать 2500 раз.
назад оглавление далее

Устройство светового микроскопа

4
3
5
2
6
7
8
1
12
11
10
9
Основание микроскопа
Тубусодержатель
Тубус
Окуляр (чаще ×7)
Револьвер микроскопа
Объективы
а) сухие: ×8, ×20, ×40
б) иммерсионный ×90
7. Предметный столик
8. Конденсор
9. Макрометрический винт
10.Микрометрический винт
11.Винт конденсора
12.Зеркало
1.
2.
3.
4.
5.
6.
Общее увеличение микроскопа = увеличение объектива × увеличение окуляра
назад
оглавление далее

Техника микроскопирования

1. Микроскопирование гистологического препарата начинают с установки правильного
освещения. Для этого с помощью вогнутого зеркала, собирающего рассеянный пучок
света, и конденсора достигают равномерного освещения поля зрения.
2. На предметный столик помещают гистологический препарат покровным стеклом вверх.
3. Изучение гистологического препарата начинают при малом увеличении (объектив х8), при
этом расстояние между объективом и покровным стеклом должно быть около 1 см.
Установку резкости проводят с помощью макровинта.
4. Рассматривают детали гистологического препарата по всей площади, перемещая его на
предметном столике.
5. Устанавливают в центр поля зрения участок гистологического препарата, который следует
изучить при большом увеличении (объектив х40).
6. С помощью револьверного устройства ставят объектив с более сильным увеличением
(х40). Установку резкости проводят с помощью микровинта.
7. Для изучения очень мелких гистологических структур используют иммерсионный
объектив (х90).
На покровное стекло препарата наносят каплю иммерсионного масла.
Осторожно опускают тубус до соприкосновения линзы объектива к маслу.
Установку резкости проводят с помощью микровинта.
После окончания работы иммерсионное масло удаляют с объектива и покровного
стекла марлей.
назад оглавление далее

Техника микроскопирования (примеры)

Почка.
Окраска: гематоксилин-эозин.
Увеличение: х 56
(малое увеличение).
Почка.
Окраска: гематоксилин-эозин.
Увеличение: х 280
(большое увеличение).
Почка.
Окраска: гематоксилин-эозин.
Увеличение: х 630
назад
(иммерсионное
увеличение).
оглавление далее

Темнопольная микроскопия

Основана на использовании специального конденсора, освещающего
препарат «косыми» лучами, не попадающими в объектив.
При наличии объекта в поле зрения свет отражается от него и
направляется в объектив.
Метод часто используется для изучения живых неокрашенных клеток.
назад
оглавление далее

Поляризационная микроскопия

Позволяет обнаружить двойное лучепреломление – анизотропию.
На объект исследования направляется поляризованный пучок света, т.е. лучи света
направлены строго в одной плоскости.
Это обеспечивает особый фильтр – поляризатор. Такой свет направляется на объект
исследования.
Второй фильтр – анализатор расположен между объективом и окуляром и позволяет
регистрировать угол отклонения плоскости поляризации света.
Микроскопия позволяет регистрировать пространственное расположение молекул в
объективе или кристаллические структуры.
Кристаллы оксалатов.
Поляризационная
микроскопия.
Увеличение х100
назад оглавление далее

Фазово-контрастная микроскопия

Метод служит для получения контрастных изображений прозрачных и бесцветных объектов, в
частности, позволяет изучать живые неокрашенные препараты.
Даже при очень малых различиях в показателях преломления разных элементов препарата
световая волна, проходящая через них, претерпевает разные изменения по фазе (приобретает
фазовый рельеф). Эти фазовые изменения, не воспринимаемые глазом, преобразуются с помощью
специального оптического устройства (кольцевой диафрагмы в конденсоре и фазовой пластинки в
объективе) в изменения амплитуды световой волны, т. е. в изменения яркости («амплитудный
рельеф»), которые уже различимы глазом.
Иными словами, в получаемом видимом изображении распределение яркостей (амплитуд)
воспроизводит фазовый рельеф. Получаемое таким образом изображение называется фазовоконтрастным.
Pseudotrichonympha grassi.
Неокрашенный препарат.
Фазовый контраст
Семенники крысы.
Неокрашенный препарат.
Фазовый контраст
Семенники крысы.
Окраска: гематоксилин-эозин
Световая микроскопия
назад оглавление далее

Флюоресцентная (люминесцентная) микроскопия

Использует принцип свечения объекта исследования при освещении его
ультрафиолетовыми лучами. Источником света служат специальные лампы.
Существует аутофлюоресценция – собственная или первичная
флюоресцен-ция. Например, свечение эластических волокон в стенке артерий.
Вторичная флюоресценция возникает после обработки препаратов
специальными красителями – флюорохромами (акридин оранжевый, родамин,
флюоресцин и др.).
Например: после обработки акридиновым оранжевым в клетке очень четко
обнаруживается ядерная ДНК (ярко-зеленое свечение) и РНК (ярко-красное
свечение). После фиксации тканей в парах формальдегида (метод Фалька)
обнаруживается
ярко-зеленое
свечение
серотонина,
катехоламинов
(адреналин, норадреналин).
Если флюоресцентные красители связать со специфическими антителами
– можно будет выявить их антигены. Этот метод получил название
иммуноцитохимического.
назад оглавление далее

Флюоресцентная (люминесцентная) микроскопия (примеры)

.
.
.
.
Цитоскелет эукариот
(эндотелиальные клетки быка).
Имунноцитохимический метод
окрашивания.
Актиновые микрофиламенты
окрашены в красный,
микротрубочки - в зеленый, ядра
клеток - в голубой цвет.
Нуклеиновые кислоты
в эпителии маточных
желез.
Окраска акридиновым
оранжевым.
Ядерная ДНК окрашена в
зеленый цвет,
РНК – в красный.
назад
Симпатические
нервные сплетения.
Метод Фалька
оглавление далее

Электронная микроскопия

Электронный микроскоп - прибор, позволяющий получать изображение объектов с
максимальным увеличением до 106 раз. Это стало возможно благодаря использованию
вместо светового потока пучка электронов, длина волны которого во много раз короче
длины волны фотонов видимого света.
Электронный микроскоп состоит из электронной пушки (устройства для получения
пучка электронов) и системы электромагнитных линз, размещенных в колонне
микроскопа в условиях вакуума.
Разрешающая способность электронного микроскопа в 1000÷10000 раз превосходит
разрешение светового микроскопа и для лучших современных приборов может
составлять менее 0,1 нм (10-10м).
Существуют
две
основные
разновидности
электронной
трансмиссионная (просвечивающая) и сканирующая (растровая).
назад
микроскопии:
оглавление далее

Трансмиссионная (просвечивающая) электронная микроскопия

Принцип работы трансмиссионного электронного микроскопа заключается в том, что
электроны, проходя через объект, расположенный вблизи объективной линзы,
взаимодействуют с его атомами и отклоняются от первоначального направления падения
пучка (рассеиваются). Далее они попадают в систему магнитных линз, которые
формируют на флуоресцентном экране (и на фотопленке) изображение внутренней
структуры объекта. При этом удается достичь разрешения порядка 0,1 нм, что
соответствует увеличениям до 1,5 106 раз.
Разрешение и информативность ТЭМ-изображений во многом определяются
характеристиками объекта и способом его подготовки. Для получения контрастного
изображения применяют ультратонкие срезы (не более 0,01 мкм), обработанные
соединениями тяжелых металлов (импрегнация солями свинца, урана, осмия и др.),
избирательно взаимодействующими с компонентами микроструктуры (химическое
контрастирование). При этом чем большей рассеивающей способностью обладает
участок исследуемого объекта (участки повышенной плотности, увеличенной толщины и
пр.), тем более темным будет его изображение.
назад оглавление примеры

Сканирующая (растровая) электронная микроскопия

Принцип работы сканирующего электронного микроскопа (СЭМ) заключается в
сканировании поверхности образца сфокусированным электронным пучком и анализе
отраженных от нее частиц и рентгеновского излучения, возникающего в результате
взаимодействия электронов с веществом.
В СЭМ пучок электронов (электронный зонда) фокусируется электромагнитными
линзами конденсора и объектива. Специальное устройство – дефлектор отклоняет
электронный пучок (первичные электроны), который скользит по поверхности (растр).
Вторичные электроны (отраженные от поверхности) воспринимаются детектором и
фокусируются на экране СЭМ, создавая ее трехмерное изображение.
Современный СЭМ позволяет работать в широком диапазоне увеличений
приблизительно от х10 (что эквивалентно увеличению сильной ручной линзы)
до х1 000 000, что приблизительно в 500 раз превышает предел увеличения лучших
оптических микроскопов.
Поверхность сканирования обязательно напыляется металлом: платина, золото,
палладий и др.
назад оглавление примеры

Электронная микроскопия (примеры)

трансмиссионная
сканирующая
.
.
.
Эритроциты в артериоле
.
.
.
Тучная клетка
назад
Эритроцит,
тромбоцит,
лейкоцит
оглавление
далее1. Гистология, цитология и эмбриология: Учебник. / Под ред. Ю.А.Афанасьева,
С.Л.Кузнецова, Н.А.Юриной. – М.: Медицина, 2006. – 768 с.
2. Гистология, эмбриология, цитология: Учебник. /
Ю.А.Челышева. – М.: «ГЭОТАР-Медиа», 2007. – 408 с.
Под
ред.
Э.Г.Улумбекова,
3. Жункейра Л.К., Карнейро Ж. Гистология: Атлас: Уч.пос.; пер. с англ., под ред. В.Л.
Быкова. – М.: «ГЭОТАР-Медиа», 2009. – 576 с.
4. Хэм А., Кормак Д. Гистология: в 5 томах; пер. с англ. – М.: Мир, 1982.
назад
оглавление

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВПО «САХАЛИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ЕСТЕСТВЕННОНАУЧНЫЙ ФАКУЛЬТЕТ

КАФЕДРА ЭКОЛОГИИ И ПРИРОДОПОЛЬЗОВАНИЯ


КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Гистология и эмбриология рыб

на тему «Методы исследования в гистологии»


Студент 2 курса

Терехов Степан Сергеевич

Научный руководитель,

ст. преподаватель кафедры экологии и природопользования

А.В. Бойко


Южно-Сахалинск


Введение


Гистология - наука об особенностях организации, функций и развития тканей и тканевом строении органов. Основным объектом изучения гистологии служат ткани, которые представляют собой филогенетически сложившиеся, топографически и функционально связанные клеточные системы и их производные, из которых образованы органы. Для того что бы понять как это всё устроено и работает, человечеству понадобилось пройти через многое, начиная с линз Антони Ванн Левенгука, когда было положено начало изучению всего живого, не видимое ранее. К современным же методам изучения, относят основной, микроскопирование.

Цель работы: Рассмотреть методы исследования в гистологии, научиться работать с гистологическими препаратами и понимать сам процесс изучения тканей различными способами микроскопирования.


1. Методы исследования в гистологии, основа


В зависимости от объекта изучения гистологию подразделяют на нормальную (изучает ткани здорового организма) и патологическую (патогистологию), которая исследует изменения тканей при заболеваниях и повреждениях (ее обычно рассматривают как раздел патологической анатомии). В силу специфики объекта и методов исследования выделяют нейрогистологию, а также учение о крови и кроветворении, ставшее теоретической основой гематологии. Кроме того, различают ряд направлений в гистологии - описательную гистологию (описание тканей), сравнительную гистологию (сравнение тканей различных видов животных), эволюционную гистологию (закономерности развития тканей в филогенезе), экологическую гистологию (изучает ткани в связи с воздействием условий обитания), экспериментальную гистологию. В гистологии используют многочисленные методы исследования - микроскопию, экспериментальный, тканевых культур (Афанасьев 1989).

Основной предмет изучения гистологии - комплексы клеток, составляющие ткани, в их взаимодействии друг с другом и с промежуточными средами. Являясь частью морфологии, гистология тесно связана с цитологией, анатомией, эмбриологией. Методологическую основу гистологии составляют клеточная теория и эволюционное учение. Гистологию принято разделять на общую (изучает общие закономерности развития, строения и функции тканей) и частную (изучает микроскопическое строение отдельных органов и систем организма). Специальными разделами гистологии являются гистохимия (химия тканей) и гистофизиология (механизмы деятельности тканей) (Юшканцева 2006).


2. Методы исследования


Методы исследования в гистологии включают приготовление гистологических препаратов с последующим их изучением с помощью светового или электронного микроскопа. Гистологические препараты представляют собой мазки, отпечатки органов, тонкие срезы кусочков органов, возможно, окрашенные специальным красителем, помещенные на предметное стекло микроскопа, заключенные в консервирующую среду и покрытые покровным стеклом.

В современной гистологии, цитологии и эмбриологии применяются разнообразные методы исследования, позволяющие всесторонне изучать процессы развития, строения и функции клеток, тканей и органов.

Главными этапами гистологического анализа являются выбор объекта исследования, подготовка его для изучения в микроскопе, применение методов микроскопирования, а также качественный и количественный анализ изображений.

Объектами исследования служат живые и мертвые (фиксированные) клетки и ткани, и их изображения, полученные в световых и электронных микроскопах.

Основным объектом исследования являются гистологические препараты, приготовленные из фиксированных структур. Препарат может представлять собой мазок(например, мазок крови, костного мозга, слюны, спинномозговой жидкости и др.),отпечаток (например, селезенки, тимуса, печени), пленку из ткани (например, соединительной или брюшины, плевры, мягкой мозговой оболочки), тонкий срез. Наиболее часто для изучения используется срез ткани или органа. Гистологические препараты могут изучаться без специальной обработки. Например, приготовленный мазок крови, отпечаток, пленка или срез органа могут сразу рассматриваться под микроскопом. Но вследствие того, что структуры имеют слабый контраст, они плохо выявляются в обычном световом микроскопе и требуется использование специальных микроскопов (фазово-контрастные и др.). Поэтому чаще применяют специально обработанные препараты: фиксированные, заключенные в твердую среду и окрашенные (Юрина 1999).

Процесс изготовления гистологического препарата для световой и электронной микроскопии включает следующие основные этапы:

взятие материала и его фиксация,

уплотнение материала,

приготовление срезов,

окрашивание или контрастирование срезов.

Для световой микроскопии необходим еще один этап - заключение срезов в бальзам или другие прозрачные среды.

Фиксация обеспечивает предотвращение процессов разложения, что способствует сохранению целостности структур. Это достигается тем, что взятый из органа маленький образец либо погружают в фиксатор (спирт, формалин, растворы солей тяжелых металлов, осмиевая кислота, специальные фиксирующие смеси), либо подвергают термической обработке. Под действием фиксатора в тканях и органах происходят сложные физико-химические изменения. Наиболее существенным из них является процесс необратимой коагуляции белков, вследствие которого жизнедеятельность прекращается, а структуры становятся мертвыми, фиксированными. Фиксация приводит к уплотнению и уменьшению объема кусочков, а также к улучшению последующей окраски клеток и тканей.

Уплотнение материала, необходимое для приготовления срезов, производится путем пропитывания предварительно обезвоженного материала парафином, целлоидином, органическими смолами. Более быстрое уплотнение достигается применением метода замораживания кусочков, например, в жидкой углекислоте.

Приготовление срезов происходит на специальных приборах - микротомах (для световой микроскопии) и ультрамикротомах (для электронной микроскопии).

Окрашивание срезов (в световой микроскопии) или напыление их солями металлов (в электронной микроскопии) применяют для увеличения контрастности изображения отдельных структур при рассматривании их в микроскопе. Методы окраски гистологических структур очень разнообразны и выбираются в зависимости от задач исследования.

Гистологические красители (по химической природе) подразделяют на кислые, основные и нейтральные. В качестве примера можно привести наиболее употребительный краситель гематоксилин, который окрашивает ядра клеток в фиолетовый цвет, и кислый краситель - эозин, окрашивающий цитоплазму в розово-желтый цвет. Избирательное сродство структур к определенным красителям обусловлено их химическим составом и физическими свойствами. Структуры, хорошо окрашивающиеся кислыми красителями, называются оксифильными, а окрашивающиеся основными - базофильными. Например, цитоплазма клеток чаще всего окрашивается оксифильно, а ядра клеток - окрашиваются базофильно.

Структуры, воспринимающие как кислые, так и основные красители, являются нейтрофильными (гетерофильными). Окрашенные препараты обычно обезвоживают в спиртах возрастающей крепости и просветляют в ксилоле, бензоле, толуоле или некоторых маслах. Для длительного сохранения обезвоженный гистологический срез заключают между предметным и покровным стеклами в канадский бальзам или другие вещества. Готовый гистологический препарат может быть использован для изучения под микроскопом в течение многих лет (Юрина, Радостина 1999).

В электронной микроскопии срезы, полученные на ультрамикротоме, помещают на специальные сетки, контрастируют солями урана, свинца и других металлов, после чего просматривают в микроскопе и фотографируют. Полученные микрофотографии служат объектом изучения наряду с гистологическими препаратами.


3. Методы микроскопирования гистологических препаратов


Микроскопия может быть световая (с использованием светового микроскопа) иэлектронная (с использованием электронного микроскопа). Световая микроскопия может осуществляться в проходящем свете, когда свет проходит через тонкий прозрачный гистологический препарат, или же в отраженном свете, когда исследуют, например, толстый или непрозрачный объект. Аналогичным образом, электронная микроскопия может быть трансмиссионной, когда пучок электронов проходит сквозь изучаемый ультратонкий срез, или же растровой, или сканирующей, когда пучок электронов отражается от поверхности исследуемого объекта. В первом случае электронный микроскоп называется трансмиссионным (ТЭМ), а во втором - сканирующим (СЭМ).


1 Световая микроскопия


Микроскопирование - основной метод изучения препаратов - используется в биологии уже более 300 лет. Современные микроскопы представляют собой разнообразные сложные оптические системы, обладающие высокой разрешающей способностью и позволяющие изучать очень тонкие детали строения клеток и тканей. Размер самой маленькой структуры, которую можно видеть в микроскопе, определяется наименьшим разрешаемым расстоянием (d0). В основном оно зависит от длины световой волны ?, и эта зависимость приближенно выражается формулой d0 = ? / 2. Таким образом, чем меньше длина световой волны, тем меньше разрешаемое расстояние и тем меньшие по размерам структуры можно видеть в препарате (т.е. выше «разрешение» микроскопа). Понятие «увеличение микроскопа» относится к его оптической системе и выражается в произведении увеличений объектива и окуляра. Однако «разрешение» микроскопа зависит от характеристик объектива и не зависит от окуляра.

Для изучения гистологических препаратов чаще применяют обычные световые микроскопы различных марок, когда в качестве источника освещения используют естественный или искусственный свет. Минимальная длина волны видимой части спектра света соответствует примерно 0,4 мкм (фиолетовый спектр). Следовательно, для обычного светового микроскопа разрешаемое расстояние равно приблизительно 0,2 мкм, а общее увеличение (произведение увеличения объектива на увеличение окуляра) достигает 2000 раз.

Единицы измерения, используемые в гистологии: Для измерения структур в световой микроскопии используются в основном микрометры: 1 мкм составляет 0,001 мм; в электронной микроскопии используются нанометры: 1 нм составляет 0,001 мкм (Юшканцева 2006)


2 Ультрафиолетовая микроскопия


Это разновидность световой микроскопии. В ультрафиолетовом микроскопе используют более короткие ультрафиолетовые лучи с длиной волны около 0,2 мкм. Разрешаемое расстояние здесь составляет приблизительно 0,1 мкм. Полученное в ультрафиолетовых лучах невидимое глазом изображение преобразуется в видимое с помощью регистрации на фотопластинке или путем применения специальных устройств (т.к. люминесцентный экран, или электронно-оптический преобразователь) (Юрина 1999)


3 Флюоресцентная (люминесцентная) микроскопия


Явления флюоресценции заключаются в том, что атомы и молекулы ряда веществ, поглощая коротковолновые лучи, переходят в возбужденное состояние. Обратный переход из возбужденного состояния в нормальное происходит с испусканием света, но с другой, большей длиной волны. В флюоресцентном микроскопе в качестве источников света для возбуждения флюоресценции применяют ртутные или ксеноновые лампы сверхвысокого давления, обладающие высокой яркостью в области спектра 0,25-0,4 мкм (ближние ультрафиолетовые лучи) и 0,4-0,5 мкм (сине-фиолетовые лучи). Длина световой волны вызванной флюоресценции всегда больше длины волны возбуждающего света, поэтому их разделяют с помощью светофильтров и изучают изображение объекта только в свете флюоресценции. Различают собственную, или первичную, и наведенную, или вторичную, флюоресценцию. Любая клетка живого организма обладает собственной флюоресценцией, однако она часто бывает чрезвычайно слабой. Вторичная флюоресценция возникает при обработке препаратов специальными красителями - флюорохромами <#"justify">Артишевский, А. А. Гистология с техникой гистологических

исследований (1999)

Антипчук, Ю. П. Гистология с основами эмбриологии (1983)

Афанасьев Ю.И., Юрина Н.А. - Гистология, цитология и эмбриология (1989) "Медицина"

Афанасьев Ю.И., Юрина Н.А. - Гистология, цитология и эмбриология (2002) "Медицина"

Быков В.Л. Частная гистология человека "Сотис" 1999

Заварзин А.А., Строева О.Г. - Сравнительная гистология. Учебник "СпБ" 2000

Кузнецов С.Л., Мушкамбаров Н.Н. - Атлас по гистологии, цитологии и эмбриологии "МИА" 2002

Рябов, К. П. Гистология с основами эмбриологии: учебное пособие (1990)

Улумбеков Э.Г., Челышев Ю.А. - Гистология. Учебник для ВУЗов (1997) "Геотар" 1997

Челышев Ю.А. - Графические тесты по гистологии, цитологии, эмбриологии "КГМУ" 2000

Юрина Н.А., Радостина А.И. - Практикум по гистологии, цитологии и эмбриологии "УДН" 1999

Юшканцева С.И., Быков В.Л. - Гистология, цитология и эмбриология. Краткий атлас "П-2" 2006


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.