Катехоламины как гормоны и медиаторы. Катехоламины в плазме (адреналин, норадреналин, дофамин). Снижение уровня катехоламинов

Дофами́н - нейромедиатор, вырабатываемый в мозге людей и животных. Также гормон, вырабатываемый мозговым веществом надпочечников и другими тканями (например, почками), но в подкорку мозга из крови этот гормон почти не проникает. По химической структуре дофамин относят к катехоламинам. Дофамин является биохимическим предшественником норадреналина (и адреналина).

Дофамин является одним из химических факторов внутреннего подкрепления (ФВП) и служит важной частью «системы поощрения» мозга, поскольку вызывает чувство удовольствия (или удовлетворения), чем влияет на процессы мотивации и обучени. Дофамин естественным образом вырабатывается в больших количествах во время позитивного, по субъективному представлению человека, опыта - к примеру, секса, приёма вкусной пищи, приятных телесных ощущений, а также наркотиков. Нейробиологические эксперименты показали, что даже воспоминания о позитивном поощрении могут увеличить уровень дофамина, поэтому данный нейромедиатор используется мозгом для оценки и мотивации, закрепляя важные для выживания и продолжения рода действия.

Дофамин играет немаловажную роль в обеспечении когнитивной деятельности. Активация дофаминергической передачи необходима при процессах переключения внимания человека с одного этапа когнитивной деятельности на другой. Таким образом, недостаточность дофаминергической передачи приводит к повышенной инертности больного, которая клинически проявляется замедленностью когнитивных процессов (брадифрения) и персеверациями. Данные нарушения являются наиболее типичными когнитивными симптомами болезней с дофаминергической недостаточностью - например,болезни Паркинсона.

НОРАДРЕНАЛИН, соединение из группы катехоламинов, нейрогормонов. Образуется в нервной системе, где служит медиатором (передатчиком) проведения нервного импульса, и в надпочечниках. В качестве гормона оказывает сильное сосудосуживающее действие, в связи с чем секреция норадреналина играет ключевую роль в механизмах регуляции кровотока.

Действие норадреналина связано с преимущественным влиянием на α-адренорецепторы. Норадреналин отличается от адреналина гораздо более сильным сосудосуживающим и прессорным действием, значительно меньшим стимулирующим влиянием на сокращения сердца, слабым действием на гладкую мускулатуру бронхов и кишечника, слабым влиянием на обмен веществ (отсутствием выраженного гипергликемического, липолитического и общего катаболического эффекта). Норадреналин в меньшей степени повышает потребность миокарда и других тканей в кислороде, чем адреналин.

Норадреналин принимает участие в регуляции артериального давления и периферического сосудистого сопротивления. Например, при переходе из лежачего положения в стоячее или сидячее уровень норадреналина в плазме крови в норме уже через минуту возрастает в несколько раз.


Норадреналин принимает участие в реализации реакций типа «бей или беги», но в меньшей степени, чем адреналин. Уровень норадреналина в крови повышается при стрессовых состояниях, шоке, травмах, кровопотерях, ожогах, при тревоге, страхе, нервном напряжении.

Кардиотропное действие норадреналина связано со стимулирующим его влиянием на β-адренорецепторы сердца, однако β-адреностимулирующее действие маскируется рефлекторной брадикардией и повышением тонуса блуждающего нерва, вызванными повышением артериального давления.

Норадреналин вызывает увеличение сердечного выброса. Вследствие повышения артериального давления возрастает перфузионное давление в коронарных и мозговых артериях. Вместе с тем, значительно возрастает периферическое сосудистое сопротивление и центральное венозное давление.

Адреналин (эпинефрин) (L-1(3,4-Диоксифенил)-2-метиламиноэтанол) - основной гормон мозгового вещества надпочечников, а также нейромедиатор. По химическому строению являетсякатехоламином. Адреналин содержится в разных органах и тканях, в значительных количествах образуется в хромаффинной ткани, особенно в мозговом веществе надпочечников.

На артериальное давление адреналин оказывает сложное влияние. В его действии выделяют 4 фазы (см схему):

· Сердечная, связанная с возбуждением β 1 адренорецепторов и проявляющаяся повышением систолического артериального давления из-за увеличения сердечного выброса;

· Вагусная, связанная со стимуляцией барорецепторов дуги аорты и сонного клубочка повышенным систолическим выбросом. Это приводит к активации дорсального ядра блуждающего нерва и включает барорецепторный депрессорный рефлекс. Фаза характеризуется замедлением частоты сердечных сокращений (рефлекторная брадикардия) и временным прекращением подъема артериального давления;

· Сосудистая прессорная, при которой периферические вазопрессорные эффекты адреналина «побеждают» вагусную фазу. Фаза связана со стимуляцией α 1 и α 2 адренорецепторов и проявляется дальнейшим повышением артериального давления. Следует отметить, что адреналин, возбуждая β 1 адренорецепторы юкстагломерулярного аппарата нефронов почек, способствует повышению секреции ренина, активируя ренин-ангиотензин-альдостероновую систему, также ответственную за повышение артериального давления.

· Сосудистая депрессорная, зависящая от возбуждения β 2 адренорецепторов сосудов и сопровождающаяся снижением артериального давления. Эти рецепторы дольше всех держат ответ на адреналин.

На гладкие мышцы адреналин оказывает разнонаправленное действие, зависящее от представленности в них разных типов адренорецепторов. За счёт стимуляции β 2 адренорецепторов адреналин вызывает расслабление гладкой мускулатуры бронхов и кишечника, а, возбуждая α 1 адренорецепторы радиальной мышцы радужной оболочки, адреналин расширяет зрачок.

Длительная стимуляция бета2-адренорецепторов сопровождается усилением выведения K + из клетки и может привести к гиперкалиемии.

Адреналин - катаболический гормон и влияет практически на все виды обмена веществ. Под его влиянием происходит повышение содержания глюкозы в крови и усиление тканевого обмена. Будучи контринсулярным гормоном и воздействуя на β 2 адренорецепторы тканей и печени, адреналин усиливает глюконеогенез и гликогенолиз, тормозит синтез гликогена в печени и скелетных мышцах, усиливает захват и утилизацию глюкозы тканями, повышая активность гликолитических ферментов. Также адреналин усиливает липолиз (распад жиров) и тормозит синтез жиров. Это обеспечивается его воздействием на β 1 адренорецепторы жировой ткани. В высоких концентрациях адреналин усиливает катаболизм белков.

Имитируя эффекты стимуляции «трофических» симпатических нервных волокон, адреналин в умеренных концентрациях, не оказывающих чрезмерного катаболического воздействия, оказывает трофическое действие на миокард и скелетные мышцы. Адреналин улучшает функциональную способность скелетных мышц (особенно при утомлении). При продолжительном воздействии умеренных концентраций адреналина отмечается увеличение размеров (функциональная гипертрофия) миокарда и скелетных мышц. Предположительно этот эффект является одним из механизмов адаптации организма к длительному хроническому стрессу и повышенным физическим нагрузкам. Вместе с тем длительное воздействие высоких концентраций адреналина приводит к усиленному белковому катаболизму, уменьшению мышечной массы и силы, похуданию и истощению. Это объясняет исхудание и истощение при дистрессе (стрессе, превышающем адаптационные возможности организма).

Адреналин оказывает стимулирующее воздействие на ЦНС, хотя и слабо проникает через гемато-энцефалический барьер. Он повышает уровень бодрствования, психическую энергию и активность, вызывает психическую мобилизацию, реакцию ориентировки и ощущение тревоги, беспокойства или напряжения. Адреналин генерируется при пограничных ситуациях.

Адреналин возбуждает область гипоталамуса, ответственную за синтез кортикотропин рилизинг гормона, активируя гипоталамо-гипофизарно-надпочечниковую систему и синтез адренокортикотропного гормона. Возникающее при этом повышение концентрации кортизола в крови усиливает действие адреналина на ткани и повышает устойчивость организма к стрессу и шоку.

Адреналин также оказывает выраженное противоаллергическое и противовоспалительное действие, тормозит высвобождение гистамина, серотонина, кининов, простагландинов, лейкотриенов и других медиаторов аллергии и воспаления из тучных клеток (мембраностабилизирующее действие), возбуждая находящиеся на них β 2 -адренорецепторы, понижает чувствительность тканей к этим веществам. Это, а также стимуляция β 2 -адренорецепторов бронхиол, устраняет их спазм и предотвращает развитие отека слизистой оболочки. Адреналин вызывает повышение числа лейкоцитов в крови, частично за счёт выхода лейкоцитов из депо в селезёнке, частично за счёт перераспределения форменных элементов крови при спазме сосудов, частично за счёт выхода не полностью зрелых лейкоцитов из костномозгового депо. Одним из физиологических механизмов ограничения воспалительных и аллергических реакций является повышение секреции адреналина мозговым слоем надпочечников, происходящее при многих острых инфекциях, воспалительных процессах, аллергических реакциях. Противоаллергическое действие адреналина связано в том числе с его влиянием на синтез кортизола.

При интракавернозном введении уменьшает кровенаполнение пещеристых тел, действуя через α-адренорецепторы.

На свертывающую систему крови адреналин оказывает стимулирующее действие. Он повышает число и функциональную активность тромбоцитов, что, наряду со спазмом мелких капилляров, обуславливает гемостатическое (кровоостанавливающее) действие адреналина. Одним из физиологических механизмов, способствующих гемостазу, является повышение концентрации адреналина в крови при кровопотере.

Монокарбоновые кислоты: химические свойства с участием карбоксильной группы (образование солей, сложных эфиров, амидов, ангидридов). Функциональные производные карбоновых кислот тиоэфиры (АцетилКоа, АцилКоа).

Одноосновные карбоновые кислоты (монокарбоновые кислоты ) – это карбоновые кислоты, содержащие ровно одну карбоксильную группу –COOH.

Образование солей. Карбоновые кислоты обладают всеми свойствами обычных кислот. Они реагируют с активными метал­лами, основными оксидами, основаниями и солями слабых кис­лот:

2RCOOH + Мg → (RCOO) 2 Mg + Н 2 ,

2RCOOH + СаО → (RCOO) 2 Ca + Н 2 О,2

RCOOH + NaOH → RCOONa + Н 2 О,

RCOOH + NaHCO 3 → RCOONa + Н 2 О + СО 2 .

Карбоновые кислоты - слабые, поэтому сильные минераль­ные кислоты вытесняют их из соответствующих солей:

CH 3 COONa + HCl → СН 3 СООН + NaCl.

Соли карбоновых кислот в водных растворах гидролизованы:

СН 3 СООК + Н 2 О СН 3 СООН + КОН.

Ангидриды образуются из карбоновых кислот при действии водоотнимающих средств:

2R-CO-OH + Р 2 О 5 → (R-CO-) 2 O + 2НРО 3 .

Сложные эфиры образуются при нагревании кислоты со спир­том в присутствии серной кислоты (обратимая реакция этерификации):

Реакции хлорангидридов карбоновых кислот с аммиаком при­водят к образованию амидов:

СН 3 -СО-Сl + CН 3 → СН 3 -СО-CН 2 + HCl.

Кроме того, амиды могут быть получены при нагревании ам­монийных солей карбоновых кислот:

Продукты взаимодействия карбоновых кислот со спиртами или фенолами представляют собой сложные эфиры. Например:

Реакция образования сложного эфира из кислоты и спирта (или фенола) называется реакцией этерификации. Она катализируется ионами водорода и поэтому ускоряется в присутствий минеральных кислот.

Сложные тиоэфиры - органические соединения, содержащие функциональную группу C-S-CO-C и являющиеся сложными эфирами тиолов и карбоновых кислот. Сложные тиоэфиры играют важную роль в биохимических процессах, наиболее известный представитель этого класса - ацетил-CoA.

Ацетилкофермент А, ацетил КоА - ацетилированная форма кофермента А, образующаяся в результате окислительного декарбоксилирования пировиноградной кислоты и при окислении жирных кислот; играет важную роль в цикле трикарбоновых кислот), а также участвует в процессах синтеза жирных кислот, стеринов, ацетилхолина и т. д.

Ацетил-КоA - СН3-CO-S-КоA.

Анаэробное окисление пировиноградной или альфа-кетоглутаровой кислот приводит к образованию высокоэнергетических метаболитов - ацетил-КоA или сукцинил-КоA соответственно.

Ацил-Коа- макроэргический продукт конденсации коэнзима А с карбоновой кислотой; в форме ацил-КоА карбоновые кислоты участвуют в обменных реакциях организма.

К аминофенолам относятся соединения, в которых функциональные группы NH 2 и OH присоединены к бензольному кольцу.

Два производных n-аминофенола применяются в медицине как обезболивающие и жаропонижающие средства. Это – парацетамол и, в меньшей степени, фенацетин

Катехоламины – дофамин, норадреналин, адреналин – биогенные амины, продукты метаболизма аминокислоты фенилаланина.

Катехоламины выполняют роль гормонов и нейромедиаторов. Адреналин является гормоном мозгового слоя надпочечников, норадреналин и дофамин – его предшественниками. Увеличение концентрации катехоламинов – типичная реакция на стресс. Их роль заключается в мобилизации организма на осуществление активной мозговой и мышечной деятельности.

Дофамин – гормон, нейромедиатор, улучшает доставку кислорода, усиливает силу сердечных сокращений, работу почек, влияет на двигательную активность.

Дофамин-гормон вырабатывается мозговым веществом надпочечников, а дофамин-нейромедиатор - областью среднего мозга, называемой «черным телом».

Дофамин-нейромедиатор . Известны четыре «дофаминовых пути» - проводящих пути мозга, в которых роль переносчика нервного импульса играет дофамин. Один из них - мезолимбический путь - считается ответственным за продуцирование чувств удовольствия. Считается, что дофамин также участвует в процессе принятия человеком решений. По крайней мере, среди людей с нарушением синтеза/транспорта дофамина многие испытывают затруднения с принятием решений. Это связано с тем, что дофамин отвечает за «чувство награды», которое зачастую позволяет принять решение, обдумывая то или иное действие ещё на подсознательном уровне.

Адреналин или метиламиноэтанолпирокатехин, образуется в надпочечниках и является гормоном, реализующим реакции типа «бей или беги». Его секреция резко повышается при стрессовых состояниях, пограничных ситуациях, ощущении опасности, при тревоге, страхе, при травмах, ожогах и шоковых состояниях.

Адреналин:

Усиливает и учащает сердцебиение

Вызывает сужение сосудов мускулатуры, брюшной полости, слизистых оболочек

Расслабляет мускулатуру кишечника, и расширяет зрачки..

Основная задача адреналина - адаптировать организм к стрессовой ситуации. Адреналин улучшает функциональную способность скелетных мышц. При продолжительном воздействии адреналина отмечается увеличение размеров миокарда и скелетных мышц. Вместе с тем длительное воздействие высоких концентраций адреналина приводит к усиленному белковому обмену, уменьшению мышечной массы и силы, похуданию и истощению. Это объясняет исхудание и истощение при дистрессе (стрессе, превышающем адаптационные возможности организма).

Адреналин повышает кровяное давление, в связи с чем стрессы могут способствовать стойкому повышению давления и заболеванию сердечно-сосудистой системы.

Адреналин часто применяют в качестве кровоостанавливающего средства. Получают его из надпочечников, а также синтетически из пирокатехина. Интересно, что лишь левовращающий (природный) адреналин обладает биологической активностью, тогда как правовращающий биологически неактивен.

Норадреналин - гормон и нейромедиатор. Норадреналин также повышается при стрессе, шоке, травмах, тревоге, страхе, нервном напряжении. В отличие от адреналина, основное действие норадреналина заключается исключительно в сужении сосудов и повышении артериального давления. Сосудосуживающий эффект норадреналина выше, хотя продолжительность его действия короче.

И адреналин, и норадреналин способны вызывать тремор - то есть дрожание конечностей, подбородка. Особенно ясно эта реакция проявляется у детей возраста 2-5 лет, при наступлении стрессовой ситуации.

Непосредственно после определения ситуации как стрессовой, гипоталамус выделяет в кровь кортикотропин (адренокортикотропный гормон), который, достигнув надпочечников, побуждает синтез норадреналина и адреналина.

«Бодрящий» эффект никотина обеспечивается выбросом в кровь адреналина и норадреналина. В среднем достаточно около 7 секунд после вдыхания табачного дыма, чтобы никотин достиг мозга. При этом происходит кратковременное ускорение сердцебиения, увеличение АД, учащение дыхания и улучшение кровоснабжения головного мозга. Сопровождающий это выброс дофамина способствует закреплению никотиновой зависимости.

Монокарбоновые кислоты: химические свойства с участием карбоксильной группы: (образование солей, сложных эфиров, амидов, ангидридов). Функциональные производные карбоновых кислот тиоэфиры – (АцетилКоА, АцилКоА).

Карбоновые кислоты, содержащие в своем составе одну карбоксильную группу, называют одноосновными, две - двухосновными и т. д. При взаимодействии карбоновых кислот со щелочами, карбонатами и гидрокарбонатами образуются соли:

Наиболее важные реакции монокарбоновых кислот приведены на схеме 1.

Схема 1. Некоторые реакции нуклеофильного замещения в карбоновых кислотах

Реакция этерификации катализируется сильными кислотами.

Тиоэфиры - серные аналоги сложных эфиров - находят весьма ограниченное применение в классической органической химии, но играют важную роль в организме. Известно, что для проявления каталитической активности большинству ферментов, имеющих белковую природу, необходимо соучастие коферментов, которыми служат разнообразные по строению низкомолекулярные органические соединения небелковой природы. Одну из групп коферментов составляют ацилкоферменты, выполняющие функцию переносчиков ацильных групп. Из них наиболее распространен ацетилкофермент А. При всей сложности строения молекулы ацетилкофермента А с позиций химического подхода можно определить, что этот кофермент функционирует как тиоэфир. В качестве тиола, участвующего в его образовании, выступает кофермент А (сокращенно обозначаемый CoASH), молекула которого построена из остатков трех компонентов - 2-аминоэтантиола, пантотеновой кислоты и аденозиндифосфата (дополнительно фосфорилированного по положению 3 в рибозном фрагменте). Аденозиндифосфат (АДФ) рассмотрен в дальнейшем как представитель другой важной группы коферментов - нуклеозидполифосфатов. Пантотеновая кислота образует, с одной стороны, амидную связь с 2-аминоэтантиолом, а с другой - сложноэфирную связь с остатком АДФ.

По ацилирующей способности все ацилкоферменты А и в том числе ацетилкофермент А, будучи тиоэфирами, занимают «золотую середину» между высокореакционными ангидридами и малоактивными карбоновыми кислотами и сложными эфирами. Их достаточно высокая активность обусловлена, в частности, повышенной стабильностью уходящей группы - аниона CoA-S- - по сравнению с гидроксид- и алкоксид-ионами кислот и сложных эфиров соответственно.

Ацетилкофермент А in vivo является переносчиком ацетильных групп на нуклеофильные субстраты.

Этим путем, например, осуществляется ацетилирование гидроксилсодержащих соединений.

С использованием ацетилкофермента А протекает превращение холина в ацетилхолин, являющегося посредником при передаче нервного возбуждения в нервных тканях (нейромедиатором).

Кроме этого, можно отметить важное участие в процессах обмена веществ самого кофермента А, функционирующего в качестве тиола. В организме любые карбоновые кислоты активируются путем превращения в реакционноспособные производные - тиоэфиры.

АцилКоА образуется при активации жирных кислот. Свободная жирная кислота независимо от длины углеводородной цепи является метаболически инертной и не может подвергаться никаким биохимическим превращениям, в том числе окислению, пока не будет активирована. Активация жирной кислоты протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима A (HS-KoA) и ионов Mg 2+ . Реакция катализируется ферментом ацил-КоА-синтетазой:

В результате реакции образуется ацил-КоА , являющийся активной формой жирной кислоты.

Насыщенные дикарбоновые кислоты: щавелевая, малоновая, янтарная, глутаровая. Соли щавелевой кислоты - оксалаты. Превращение янтарной кислоты в фумаровую как пример биологической реакции дегидрирования.

В настоящем разделе будут рассмотрены некоторые представители дикарбоновых кислот алифатического и ароматического рядов (табл. 1). Все они представляют собой кристаллические вещества.

Таблица 1. Названия некоторых дикарбоновых кислот и их производных

Систематические названия дикарбоновых кислот строятся по общим правилам заместительной номенклатуры. Однако для большинства из них предпочтительны тривиальные названия. Их латинские названия служат основой названия анионов и производных кислот, которые часто не совпадают с русскими тривиальными названиями (см. табл. 1).

Щавелевая кислота - простейшая двухосновная кислота. Некоторые ее соли, например оксалат кальция, трудно растворимы и часто образуют камни в почках и мочевом пузыре (оксалатные камни).

Янтарная кислота в заметном количестве была обнаружена в янтаре, откуда получила название сама кислота и ее производные сукцинаты (от лат. succinium - янтарь).

Глутаровая кислота (Пентандиовая кислота ) - двухосновная предельная карбоновая кислота. Обладает достаточно высокой растворимостью в воде. Используется в производстве полимеров, типа полиэстера и полиамидов.

Кето-производное глутаровой кислоты - α-кетоглутаровая кислота (α-кетоглутарат) является важным биологическим соединением. Эта кетокислота образуется при дезаминировании глутамата, и является одним из промежуточных продуктов цикла Кребса.

Оксалаты - соли и эфиры щавелевой кислоты. Соли содержат в своём составе дианион (оксалат) C 2 O 4 2− или (COO) 2 2− , образующийся при двойном депротонировании щавелевой кислоты.

Большинство солей оксалатов малорастворимы в воде, например, оксалат кальция, который используется для обнаружения кальция. Хорошо растворимы оксалат калия и аммония.

Анион оксалата может выступать в качестве бидентатного лиганда, образуя пятичленный цикл MO 2 C 2 , как например, в ферриоксалате калия - K 3 . Благодаря его хорошей растворимости щавелевая кислота используется для удаления ржавчины.

Оксалаты широко распространены в природе, например, в щавеле. Корни и/или листья ревеня, гречихи содержат щавелевую кислоту. Накопление щавелевой кислоты происходит из-за неполного окисления углеводов в процессе биосинтеза.

Следующие съедобные растения содержат оксалаты в порядке уменьшения концентрации чёрный перец, петрушка, семена мака, шпинат, сахарная свекла, какао, шоколад, большинство орехов и ягод, фасоль.

Листья чайного куста содержат большое относительное количество оксалатов по отношению к другим растениям. Обычно его экстракты содержат от малых до средних концентраций оксалатов благодаря малой массе используемых листьев.

Сродство оксалата к двухвалентным катионам отражается в способности к образованию нерастворимых осадков. Так в организме оксалат соединяется с катионами, такими как Ca 2+ , Fe 2+ и Mg 2+ . Вследствие чего накапливаются кристаллы соответствующих оксалатов, которые из-за своей формы раздражают кишечник и почки. Поскольку оксалаты связывают важные элементы, например кальций, то долгое питание пищей, содержащей много оксалатов, может вызвать проблемы со здоровьем.

Здоровый человек может безопасно питаться пищей с оксалатами в умеренных количествах, но для людей с болезнями почек, подагрой, ревматоидным артритом рекомендуется избегать пищи с большим количеством оксалатов. Кристаллы оксалата кальция, более известные как почечный камень, забивают почечные протоки. Считается, что 80 % почечных камней образуется из оксалата кальция.

Аналогично, большие поступления кальция совместно с пищей содержащей оксалаты приводит к выпадению оксалата кальция в пищеварительном тракте, уменьшая поступления оксалатов в организм на 97 %.

Окисление янтарной кислоты in vivo . Дегидрирование (окисление) янтарной кислоты в фумаровую, катализируемое в организме ферментом, осуществляется с участием кофермента ФАД. Реакция протекает стереоспецифично с образованием фумаровой кислоты (в ионной форме - фумарат).

Сукцинатдегидрогеназа (КФ 1.3.99.2) катализирует превращение янтарной кислоты в фумаровую. Кофактором фермента является ФАД. Фермент прочно связан с внутренней мембраной митохондрий.

> Определение уровня катехоламинов (адреналина, норадреналина, дофамина) в крови

Данная информация не может использоваться при самолечении!
Обязательно необходима консультация со специалистом!

Что такое катехоламины, и для чего нужно определять их содержание в крови?

Катехоламины – это особые активные соединения, которые в основной своей массе синтезируются нервными клетками и клетками нейроэндокринных желез в ответ на их стимуляцию. Катехоламины отвечают за регуляцию деятельности большинства систем организма – дыхательной, сердечно-сосудистой, опорно-двигательной.

К катехоламинам относятся адреналин, норадреналин и дофамин. Изменение концентрации этих веществ в плазме крови приводит к изменению пульса, колебаниям артериального давления, учащению или урежению дыхания. Особенно заметен эффект действия катехоламинов при шоковых состояниях – в условиях стресса они запускают резервные механизмы организма.

Резкое повышение синтеза катехоламинов отмечается при некоторых заболеваниях. С помощью определения содержания этих веществ в крови можно поставить правильный диагноз, выяснить стадию заболевания и определиться с дальнейшей тактикой лечения.

Кто назначает анализ крови на катехоламины, где его сдают?

Назначить этот анализ могут врач общей практики, кардиолог, эндокринолог. Сдают кровь на анализ в биохимической лаборатории или в профильном отделении, в котором пациент проходит лечение по поводу основного заболевания.

Подготовка к сдаче крови на катехоламины

Из рациона обследуемого исключают продукты и напитки, обладающие тонизирующим действием (чай, кофе, какао, шоколад, бананы). За 12 часов до исследования не нужно принимать пищу, при этом пить простую воду разрешается. В случае приема препаратов из группы адреноблокаторов или симпатомиметиков за 10–15 дней до анализа их следует отменить, но только по согласованию с врачом. Это же условие необходимо соблюсти при приеме некоторых типов антибиотиков, транквилизаторов. Непосредственно перед забором крови пациенту обеспечивают полнейший покой в течение 20–30 минут

Показания для определения катехоламинов

Данный анализ назначают для диагностики катехоламин-продуцирующих опухолей (феохромоцитомы, нейробластомы, параганглиомы). Пациентов при этих опухолях беспокоят приступы головной боли, выраженная артериальная гипертензия (с гипертоническими кризами), при которой давление резко повышается во время очередного выброса гормонов в кровь. Также могут отмечаться приступы потливости, беспричинного беспокойства, развиваются быстрая утомляемость, сонливость.

Нормальное содержание катехоламинов в крови

Кровь взрослого человека в норме содержит адреналина 10–100 пг/мл, норадреналина 70–750 пг/мл, дофамина 10–87 пг/мл.

Интерпретация результатов, преимущества и недостатки метода

К повышению уровня этих нейромедиаторов приводят опухоли (феохромоцитома, ганглиома), стресс, возбуждение, инфаркт миокарда, черепно-мозговые травмы, сильные эмоциональные и физические нагрузки, хронический алкоголизм, маниакально-депрессивный синдром. Снижение показателей не имеет большого клинического значения, но отмечается при анорексии, паркинсонизме, болезни Альцгеймера.

Недостатком метода считается то, что посредством его нельзя определить место расположения опухоли, продуцирующей катехоламины. Для точной диагностики необходимо выполнение компьютерной томографии, ультразвукового исследования или МРТ.

Исследование крови на катехоламины не рекомендуется проводить детям младше 14 лет. Связано это с меньшей устойчивостью детей к стрессам. Взятие крови на анализ сопровождается эмоциональным напряжением, что может привести к получению ложноположительного результата. Детям следует проводить анализ содержания катехоламинов в моче.

Адреналин, норадреналин, дофамин, серотонин – это биогенные амины, являющиеся гормонами и нейромедиаторами. Их содержание значительно увеличивается в биологических жидкостях при некоторых нейроэндокринных новообразованиях.

Для чего используется этот анализ?

  • Для диагностики феохромоцитомы, нейробластомы, карциноидных опухолей и других нейроэндокринных образований.

Когда назначается анализ?

  • При подозрении на наличие новообразований APUD-системы (нейроэндокринных опухолей).

Синонимы русские

Катехоламины (эпинефрин, норэпинефрин), серотонин (5-гидроксиприптамин) и их метаболиты (ВМК, ГВК, 5-ОИУК).

Синонимы английские

Catecholamines (epinephrine/adrenaline, norepinephrine/noradrenaline, dopamine), serotonine (5-hydroxytryptamine; 5-HT) and metabolites (vanillylmandelic acid /VMA, homovanillic acid/HVA, 5-hydroxyindoleacetic acid/5-HIAA).

Метод исследования

Высокоэффективная жидкостная хроматография, газовая хроматография-масс-спектрометрия (ГХ-МС).

Единицы измерения

Пг/мл (пикограмм на миллилитр), нг/мл (нанограмм на миллилитр), мг/сут. (миллиграмм в сутки).

Какой биоматериал можно использовать для исследования?

Суточную мочу, венозную кровь.

Как правильно подготовиться к исследованию?

  • Исключить из рациона бананы, авокадо, сыр, кофе, чай, какао, пиво в течение 48 часов до исследования.
  • Не принимать пищу в течение 12 часов до исследования.
  • Отменить симпатомиметики за 14 дней до исследования (по согласованию с врачом).
  • Исключить прием мочегонных препаратов в течение 48 часов до сбора мочи (по согласованию с врачом).
  • Полностью исключить прием лекарственных препаратов в течение 24 часов перед исследованием (по согласованию с врачом).
  • Исключить физическое и эмоциональное перенапряжение в течение 24 часов до исследования.
  • Исключить физическое и эмоциональное перенапряжение во время сбора суточной мочи (в течение суток).
  • Не курить в течение 24 часов до исследования.
  • Не курить в течение всего периода сбора суточной мочи.

Общая информация об исследовании

Нейроэндокринные опухоли (апудомы) – новообразования, происходящие из эндокринных клеток, диффузно расположенных в различных тканях и органах (APUD). К ним относятся феохромоцитома, нейробластома, гастринома, ВИПома, карциноид и некоторые другие новообразования. В редких случаях выявляется наследственный синдром множественной эндокринной неоплазии (МЭН), для которого характерно одновременное наличие нейроэндокринных опухолей в разных органах и тканях (например, феохромоцитома медуллярный рак щитовидной железы нейромы слизистых оболочек ганглионейромы кишечника).

Феохромоцитома является гормонально активной опухолью клеток симпато-адреналовой системы, которая вырабатывает катехоламины. В 90 % случаев феохромоцитомы возникают в мозговом веществе надпочечников. Гораздо реже они локализуются вне надпочечников: в 8 % – в аортальном поясничном параганглии, менее чем в 2 % случаев – в брюшной и грудной полостях (параганглиях, мочевом пузыре, воротах печени и почек) и менее чем в 0,1 % случаев – в области шеи (бифуркация сонной артерии). Патогенез и клиническая картина заболевания обусловлены избыточным поступлением в кровь адреналина, норадреналина.

Катехоламины синтезируются из аминокислоты тирозина и обеспечивают регуляцию основных физиологических параметров организма (частоты дыхания и сердечных сокращений, артериального давления, почечного кровотока), а также участвуют в процессах высшей нервной деятельности (формировании настроения, мотивации). В норме уровень катехоламинов повышается при воздействии стрессовых факторов и остается низким в покое. Опухоли нейроэндокринного происхождения характеризуются неконтролируемой секрецией катехоламинов, в результате чего их концентрация, а также уровень их метаболитов в крови и моче многократно возрастает.

В большинстве случаев феохромоцитома секретирует оба вида катехоламинов. Некоторые опухоли продуцируют только один из этих моноаминов, очень редко преобладает дофамин. Кроме катехоламинов, феохромоцитома может синтезировать серотонин, адренокортикотропный гормон , вазоактивный интестинальный пептид, соматостатин и другие гормоны.

Соответствий между размерами опухоли, уровнем катехоламинов в крови и клинической картиной не существует. Мелкие опухоли могут синтезировать и секретировать в кровь большое количество катехоламинов, тогда как крупные опухоли метаболизируют катехоламины в собственной ткани и секретируют лишь небольшую их часть. Чаще встречается так называемая пароксизмальная форма феохромоцитомы, при которой секреция норадреналина происходит не постоянно, а эпизодически. Так как норадреналин достаточно быстро метаболизируется, наиболее точный результат анализа будет получен при взятии мочи во время или сразу после эпизода гипертонического криза, а не в межприступный период. В межприступный период следует измерять концентрацию основного метаболита норадреналина – ванилилминдальной кислоты . Она не подвергается дальнейшим биохимическим превращениям и может быть использована для оценки концентрации норадреналина, даже если его секреция носит пульсовый характер.

Нейробластома тоже является нейроэндокринной опухолью, для которой характерна секреция избытка адреналина, норадреналина и их метаболитов. Однако при диагностике нейробластомы гораздо важнее уровень дофамина и его конечного метаболита гомованилиновой кислоты. Повышение ее концентрации в моче обнаруживается в 90 % случаев нейробластомы.

Для карциноидных опухолей разной локализации характерна секреция серотонина. Серотонин не является катехоламином, но также относится к группе биогенных аминов с гормональной и нейромедиаторной активностью. Он синтезируется из аминокислоты триптофана и хранится в энтерохромаффинных клетках желудочно-кишечного тракта (80-95 % от общего количества), различных структурах головного мозга, тучных клетках кожи, тромбоцитах и некоторых других эндокринных органах. Серотонин понижает порог болевой чувствительности, регулирует функцию гипофиза, влияет на сосудистый тонус, свертываемость крови , моторику и секреторную активность желудочно-кишечного тракта. При карциноидных опухолях в моче повышается концентрация продукта метаболизма серотонина – 5-гидроксииндолуксусная кислота . Анализ суточной мочи на 5-гидроксииндолуксусную кислоту характеризуется высокой чувствительностью (75 %) и специфичностью (88-100 %), что позволяет считать этот тест одним из основных способов подтвердить диагноз «карциноидная опухоль». Однако следует отметить, что существуют не секретирующие серотонин карциноиды, а симптомы заболевания неспецифичны и у части пациентов длительно могут отсутствовать.

При хирургическом удалении и эффективном лечении нейроэндокринных опухолей уровень гормонов и их метаболитов нормализуется. Сохранение повышенной концентрации вазоактивных пептидов и продуктов их метаболизма свидетельствует о неэффективности терапии, наличии метастазов или о том, что опухоль не удалось удалить полностью.

Для чего используется исследование?

  • Для диагностики феохромоцитомы, параганглиом, нейробластомы и карциноидных опухолей;
  • для контроля за лечением нейроэндокринных опухолей;
  • для оценки эффективности проводимой терапии апудом;
  • для диагностики рецидивов нейроэндокринных опухолей.

Когда назначается исследование?

  • При подозрении на феохромоцитому (приступы головных болей , учащенного сердцебиения, усиленная потливость, боли в животе , тошнота);
  • при обследовании пациентов с тяжелой стойкой артериальной гипертензией, кризовым течением и при неэффективности стандартной гипотензивной терапии;
  • при любой форме артериальной гипертонии у детей;
  • при повышении АД после назначения бета-адреноблокаторов или ганглиоблокаторов;
  • при наследственной предрасположенности к синдромам множественных эндокринных неоплазий, даже при отсутствии симптомов новообразований;
  • при симптомах нейробластомы (чаще у детей) – признаках сдавливания окружающих тканей, боли в костях, хромоте, диарее /запоре , потере массы тела;
  • при симптомах карциноидной опухоли: чувстве прилива крови к коже лица и шеи, потливости, головной боли, диареи, боли в животе, чувстве перебоев в работе сердца, одышке;
  • при пеллагре (гиповитаминоз РР, связанный с повышенной продукцией серотонина из триптофана при карциноиде);
  • при выявлении новообразований в области надпочечников при ультразвуковом исследовании, компьютерной или магнитно-резонансной томографии;
  • после удаления апудомы (нейроэндокринной опухоли);
  • при мониторинге состояния пациентов с МЭН-синдромами.

Что означают результаты?

Референсные значения

  • Адреналин: 0 — 110 пг/мл.
  • Норадреналин: 70 — 750 пг/мл.
  • Дофамин: 0 — 87 пг/мл.
  • Серотонин: 50 — 220 нг/мл.
  • Ванилилминдальная кислота
  • Гомованилиновая кислота
  • 5-гидроксииндолуксусная кислота: 2 — 7 мг/сут.

Причины повышения уровня адреналина, норадреналина и ванилилминдальной кислоты:

  • нейробластома;
  • выраженное беспокойство и интенсивные физические нагрузки;
  • гипертоническая болезнь (увеличение уровня адреналина в 1,5-2 раза);
  • гипотензия, гипогликемия;
  • прием лекарств (аспирина, леводопы, тетрациклина, пенициллина, препаратов адреналина и норадреналина).

Причины понижения уровня адреналина, норадреналина и ванилилминдальной кислоты:

  • анорексия;
  • синдром Райли – Дея;
  • ортостатическая гипотензия;
  • прием лекарств (клонидина, имипрамина, резерпина, ингибиторов МАО).

Причины повышения уровня дофамина и гомованилиновой кислоты:

  • нейробластома;
  • феохромоцитома и другие параганглиомы;
  • опухоли головного мозга;
  • синдром Костелло;
  • прием лекарств (дисульфирама, леводопы, резерпина).

Причины понижения уровня дофамина и гомованилиновой кислоты:

  • прием лекарств (аспирина, ингибиторов МАО).

Причины повышения уровня серотонина и 5-гидроксииндолуксусной кислоты:

  • карциноидные опухоли;
  • медуллярный рак щитовидной железы;
  • опухоли яичка;
  • эндокардит;
  • демпинг-синдром;
  • острая кишечная непроходимость;
  • муковисцидоз;
  • прием лекарств (парацетамола, диазепама, напроксена, пиндолола).

Причины понижения уровня серотонина и 5-гидроксииндолуксусной кислоты:

  • мастоцитоз;
  • фенилкетонурия;
  • карциноидные опухоли прямой кишки;
  • болезнь Хартнупа;
  • прием лекарств (этанола, имипрамина, изониазида, сульфасалазина).

Что может влиять на результат?

Увеличивают концентрацию катехоламинов и их метаболитов в крови и моче:

  • некоторые лекарственные препараты, такие как хлорпромазин, бензодиазепины, симпатомиметики, витамин С , рибофлавин и витамин В 12 , ампициллин, аспирин, леводопа, эритромицин, тетрациклин, препараты адреналина, амфетаминов, хинидин;
  • некоторые продукты (красное вино, сыр, квашеная капуста, авокадо, киви, сливы, шоколад).
  • некоторые лекарственные препараты, такие как соли лития, ингибиторы МАО, метилдопа, морфин, резерпин;
  • продукты, богатые серотонином и триптофаном (авокадо, бананы, сливы, орехи, ананасы, киви, грейпфруты).

Важные замечания

  • В 20-30 % всех случаев феохромоцитома возникает в результате наследуемых мутаций, поэтому выявление этого заболевания (особенно при двусторонней локализации) требует исключения опухоли у членов семьи.
  • Концентрация гормонов и в меньшей степени их метаболитов в моче подвержена суточным колебаниям, а также зависит от сопутствующих заболеваний, питания и приема некоторых лекарств. Несмотря на это что ее значительное (четырехкратное) повышение позволяет с уверенностью предполагать наличие опухоли нейроэндокринного происхождения.
  • Результат анализа не позволяет определить локализацию, размер, количество опухолей, а также дифференцировать злокачественные и доброкачественные опухоли. Для уточнения диагноза, локализации, размера и типа опухоли необходимы инструментальные методы диагностики и гистологическое исследование материала.
  • Катехоламины (адреналин, норадреналин, дофамин) и их метаболиты (ванилилминдальная кислота, гомованилиновая кислота, 5-гидроксииндолуксусная кислота) в моче
  • Vinik AI et al. NANETS consensus guidelines for the diagnosis of neuroendocrine tumor. Pancreas. 2010 Aug;39(6):713-34.
  • Pacak K et al. Pheochromocytoma: recommendations for clinical practice from the First International Symposium. October 2005. Nat Clin Pract Endocrinol Metab. 2007 Feb;3(2):92-102.

Считается одним из важнейших «медиаторов бодрствования». Норадренергические проекции участвуют в восходящей ретикулярной активирующей системе.

Синтез норадреналина

Предшественником норадреналина является дофамин (он синтезируется из тирозина, который, в свою очередь - производноефенилаланина), который с помощью фермента дофамин-бета-гидроксилазы гидроксилируется (присоединяет OH-группу) до норадреналина в везикулах синаптических окончаний. При этом норадреналин тормозит фермент, превращающий тирозин в предшественник дофамина, благодаря чему осуществляется саморегуляция его синтеза.

Рецепторы норадреналина

Выделяют альфа-1, альфа-2 и бета-рецепторы к норадреналину. Каждая группа делится на подгруппы, различающиеся сродством к разным агонистам, антагонистам и, частично, функциями. Альфа-1 и бета-рецепторы могут быть только постсинаптическими и стимулируют аденилатциклазу, альфа-2 могут быть и пост-, и пре-синаптическими, и тормозят аденилатциклазу. Бета-рецепторы стимулируют липолиз.

Деградация норадреналина

У норадреналина несколько путей деградации, обеспечивающихся двумя ферментами: моноаминооксидазой-А (МАО-А) и катехол-О-метил-трансферазой (КОMT). В конечном итоге норадреналин превращается либо в 4-гидрокси-3-метоксифенилгликоль (англ.)русск., либо в ванилилминдальную кислоту.

Норадренергическая система

Норадреналин является медиатором как голубоватого пятна (лат. locus coeruleus ) ствола мозга, так и окончаний симпатической нервной системы. Количество норадренергических нейронов в ЦНС невелико (несколько тысяч), но у них весьма широкое поле иннервации в головном мозге.

Норадреналин как гормон

Действие норадреналина связано с преимущественным влиянием на α-адренорецепторы. Норадреналин отличается от адреналина гораздо более сильным сосудосуживающим и прессорным действием, значительно меньшим стимулирующим влиянием на сокращения сердца, слабым действием на гладкую мускулатуру бронхов и кишечника, слабым влиянием на обмен веществ (отсутствием выраженного гипергликемического, липолитического и общего катаболического эффекта). Норадреналин в меньшей степени повышает потребность миокарда и других тканей в кислороде, чем адреналин.

Норадреналин принимает участие в регуляции артериального давления и периферического сосудистого сопротивления. Например, при переходе из лежачего положения в стоячее или сидячее уровень норадреналина в плазме крови в норме уже через минуту возрастает в несколько раз.



Норадреналин принимает участие в реализации реакций типа «бей или беги», но в меньшей степени, чем адреналин. Уровень норадреналина в крови повышается при стрессовых состояниях, шоке, травмах, кровопотерях, ожогах, при тревоге, страхе, нервном напряжении.

Кардиотропное действие норадреналина связано со стимулирующим его влиянием на β-адренорецепторы сердца, однако β-адреностимулирующее действие маскируется рефлекторной брадикардией и повышением тонуса блуждающего нерва, вызванными повышением артериального давления.

Норадреналин вызывает увеличение сердечного выброса. Вследствие повышения артериального давления возрастает перфузионное давление в коронарных и мозговых артериях. Вместе с тем, значительно возрастает периферическое сосудистое сопротивление и центральное венозное давление.

Дофами́н (допами́н , DA ) - нейромедиатор, вырабатываемый в мозге людей и животных. Также гормон, вырабатываемый мозговым веществом надпочечников и другими тканями (например, почками), но в подкорку мозга из крови этот гормон почти не проникает. По химической структуре дофамин относят к катехоламинам. Дофамин является биохимическим предшественникомнорадреналина (и адреналина).

Нейромедиатор

Дофамин является одним из химических факторов внутреннего подкрепления (ФВП) и служит важной частью «системы вознаграждения» мозга, поскольку вызывает чувство удовольствия (или удовлетворения), чем влияет на процессы мотивации и обучения . Дофамин естественным образом вырабатывается в больших количествах во время положительного, по субъективному представлению человека, опыта - к примеру, секса, приёма вкусной пищи, приятных телесных ощущений, а также наркотиков . Нейробиологические эксперименты показали, что даже воспоминания о поощрении могут увеличить уровень дофамина , поэтому данный нейромедиатор используется мозгом для оценки и мотивации, закрепляя важные для выживания и продолжения рода действия .



Дофамин играет немаловажную роль в обеспечении когнитивной деятельности. Активация дофаминергической передачи необходима при процессах переключения внимания человека с одного этапа когнитивной деятельности на другой. Таким образом, недостаточность дофаминергической передачи приводит к повышенной инертности больного, которая клинически проявляется замедленностью когнитивных процессов (брадифрения) и персеверациями. Данные нарушения являются наиболее типичными когнитивными симптомами болезней с дофаминергической недостаточностью - например, болезни Паркинсона .

Как и у большинства нейромедиаторов, у дофамина существуют синтетические аналоги, а также стимуляторы его выделения в мозге. В частности, многие наркотики увеличивают выработку и высвобождение дофамина в мозге в 5-10 раз, что позволяет людям, которые их употребляют, получать чувство удовольствия искусственным образом . Так, амфетамин напрямую стимулирует выброс дофамина, воздействуя на механизм его транспортировки . Другие наркотики, например, кокаин и некоторые другие психостимуляторы, блокируют естественные механизмы обратного захвата дофамина, увеличивая его концентрацию в синаптическом пространстве . Морфий и никотин имитируют действие натуральных нейромедиаторов , а алкоголь блокирует действие антагонистов дофамина . Если пациент продолжает перестимулировать свою «систему поощрения», постепенно мозг адаптируется к искусственно повышаемому уровню дофамина, производя меньше гормона и снижая количество рецепторов в «системе поощрения» , один из факторов побуждающих наркомана увеличивать дозу для получения прежнего эффекта. Дальнейшее развитие химической толерантности может постепенно привести к метаболическим нарушениям в головном мозге, а в долговременной перспективе потенциально нанести серьёзный ущерб здоровью мозга .

Биосинтез

Предшественником дофамина является L-тирозин (он синтезируется из фенилаланина), который гидроксилируется ферментомтирозингидроксилазой с образованием L-ДОФА, которая, в свою очередь, декарбоксилируется с помощью фермента L-ДОФА-декарбоксилазы и превращается в дофамин. Этот процесс происходит в цитоплазме нейрона.

Рецепторы

Постсинаптические дофаминовые рецепторы относятся к семейству GPCR. Существует по меньшей мере пять различных подтипов дофаминовых рецепторов - D 1-5 . Рецепторы D 1 и D 5 обладают довольно значительной гомологией и сопряжены с белком G S , который стимулирует аденилатциклазу, вследствие чего их обычно рассматривают совместно как D 1 -подобные рецепторы. Остальные рецепторы подсемейства подобны D 2 и сопряжены с G i -белком, который ингибирует аденилатциклазу, вследствие чего их объединяют под общим названием D-2-подобные рецепторы. Таким образом, дофаминовые рецепторы играют роль модуляторов долговременной потенциации .

Участие во «внутреннем подкреплении» принимают D 2 и D 4 рецепторы.

В больших концентрациях дофамин также стимулирует α- и β-адренорецепторы. Влияние на адренорецепторы связано не столько с прямой стимуляцией адренорецепторов, сколько со способностью дофамина высвобождать норадреналин из гранулярных пресинаптических депо, то есть оказывать непрямое адреномиметическое действие.

«Круговорот» дофамина [

Основные элементы синапса

Синтезированный нейроном дофамин накапливается в дофаминовыхвезикулах (т. н. «синаптическом пузырьке»). Этот процесс является протон-сопряжённым транспортом. В везикулу с помощью протон-зависимой АТФазы закачиваются ионы H + . При выходе протонов по градиенту в везикулу поступают молекулы дофамина.

Далее дофамин выводится в синаптическую щель. Часть его участвует в передаче нервного импульса, воздействуя на клеточные D-рецепторыпостсинаптической мембраны, а часть возвращается в пресинаптический нейрон с помощью обратного захвата. Ауторегуляция выхода дофамина обеспечивается D 2 и D 3 рецепторами на мембране пресинаптического нейрона. Обратный захват производится транспортером дофамина. Вернувшийся в клетку медиатор расщепляется с помощьюмоноаминооксидазы (МАО) и, далее, альдегиддегидрогеназы и катехол-О-метил-трансферазы до гомованилиновой кислоты.

Участие в системе поощрения

Лабораторная крыса в специальном ящике нажимает рычаг. К голове животного прикреплены стимуляторы.

В фундаментальном исследовании 1954 года канадские учёные Джеймс Олдс и его коллега Питер Милнер обнаружили, что если имплантировать электроды в определённые участки мозга, особенно в средний узел переднего мозга, то крысу можно приучить нажимать рычаг в клетке, включающий стимуляцию низковольтными разрядами электричества . Когда крысы научились стимулировать этот участок, они нажимали рычаг до тысячи раз в час . Это дало основание предположить, что стимулируется центр наслаждения. Один из главных путей передачи нервных импульсов в этом участке мозга - дофаминовый, поэтому исследователи выдвинули версию, что главное химическое вещество, связанное с удовольствием, - это дофамин. В дальнейшем это предположение было подтверждено радионуклидными томографическими сканерами и открытием антипсихотиков(лекарственных средств, подавляющих продуктивные симптомы шизофрении) .

Однако в 1997 году было показано, что дофамин играет более тонкую роль. В эксперименте Шульца у обезьяны создавали условный рефлекс по классической схеме Павлова: после светового сигнала в рот обезьяне впрыскивали сок. Было установлено, что:

1. Когда сок впрыскивали неожиданно (не предваряя его сигналом), активность дофаминовых нейронов увеличивалась.

2. На этапе обучения активность дофаминовых нейронов увеличивалась по-прежнему в ответ на впрыскивание сока.

3. Когда условный рефлекс был сформирован, активность дофаминовых нейронов увеличивалась после подачи сигнала (до впрыскивания сока). Само впрыскивание сока на активности этих нейронов больше не отражалось (что противоречит гипотезе, согласно которой дофамин связан просто с получением удовольствия).

4. Если в момент, когда ожидалось получение сока, сок не впрыскивали, активность дофаминовых нейронов снижалась.

Это позволило предположить, что дофамин участвует в формировании и закреплении условных рефлексов при положительном подкреплении и в гашении их, если подкрепление прекращается. Другими словами, если наше ожидание награды оправдывается, мозг сообщает нам об этом выработкой дофамина. Если же награда не последовала, снижение уровня дофамина сигнализирует, что модель разошлась с реальностью. В дальнейших работах показано, что активность дофаминовых нейронов хорошо описывается известной моделью обучения автоматов: действиям, быстрее приводящим к получению награды, приписывается большая ценность. Таким образом происходит обучение методом проб и ошибок [ .

Дофаминергическая система [

Из всех нейронов ЦНС только около семи тысяч вырабатывают дофамин. Известно несколько дофаминовых ядер, расположенных в мозге. Этодугообразное ядро (лат. nucleus arcuatus ), дающее свои отростки в срединное возвышение гипоталамуса. Дофаминовые нейроны чёрной субстанции посылают аксоны встриатум (хвостатое и чечевицеобразное ядро). Нейроны, находящиеся в области вентральной покрышки, дают проекции к лимбическим структурам и коре.

Основные дофаминовые пути.

Основными дофаминовыми путями являются:

· мезокортикальный путь (процессы мотивации и эмоциональные реакции)

· мезолимбический путь (продуцирование чувств удовольствия, ощущения награды и желания)

· нигростриарный путь (двигательная активность, экстрапирамидная система)

Тела нейронов нигростриатного , мезокортикального и мезолимбического трактов образуют комплекс нейронов чёрной субстанции и вентрального поля покрышки. Аксоны этих нейронов идут вначале в составе одного крупного тракта (медиального пучка переднего мозга), а далее расходятся в различные мозговые структуры. Некоторые авторы объединяют мезокортикальную и мезолимбическую подсистемы в единую систему, однако более обоснованно выделение мезокортикальной и мезолимбической подсистем соответственно проекциям в лобную кору и лимбические структуры мозга .

В экстрапирамидной системе дофамин играет роль стимулирующего нейромедиатора, способствующего повышению двигательной активности, уменьшению двигательной заторможенности и скованности, снижению гипертонуса мышц. Физиологическими антагонистами дофамина в экстрапирамидной системе являютсяацетилхолин и ГАМК.

Другие подсистемы ]

Выделяют также тубероинфундибулярный путь (лимбическая система - гипоталамус - гипофиз), инцертогипоталамический , диенцефалоспинальный иретинальный (иногда, вдобавок к этому, перивентрикулярную и ольфакторную системы ). Данная дифференциация не является абсолютной, поскольку проекции дофаминергических нейронов разных трактов «перекрываются»; кроме того, в мозге отмечается и диффузное распределение дофаминергических элементов (отдельных клеток с отростками) .

В гипоталамусе и гипофизе дофамин играет роль естественного тормозного нейромедиатора, угнетающего секрецию ряда гормонов. При этом угнетающее действие на секрецию разных гормонов реализуется при разных концентрациях дофамина, что обеспечивает высокую специфичность регуляции. Наиболее чувствительна к тормозящему действию дофаминергических сигналов секреция пролактина, в меньшей степени - секреция соматолиберина и соматотропина, в ещё меньшей - секреция кортиколиберина и кортикотропина и в совсем малой степени - секреция тиролиберина и тиротропина. Секреция гонадотропинов и гонадолиберина не угнетается дофаминергическими сигналами.

Ввиду чувствительности некоторых гормональных подсистем к уровню дофамина препараты-дофаминомиметики, усиливающие его синтез, могут применяться в качестве терапии при гормональных заболеваниях. Например, дофаминомиметики назначают при гиперпролактинемии и при болезни Паркинсона.