Сверхпроводники и их характеристики. Применение явления сверхпроводимости. I. История открытия сверхпроводимости

Вопросы различных применений сверхпроводящих материалов стали обсуждаться практически сразу после открытия явления сверхпроводимости. Еще Камерлинг-Оннес считал, что с помощью сверхпроводников можно создавать экономичные установки для получения сильных магнитных полей. Однако реальное использование сверхпроводников началось в 50-х − начале 60-х годов XX века. В настоящее время работают сверхпроводящие магниты различных размеров и форм. Их применение вышло за рамки чисто научных исследований, и сегодня они широко используются в лабораторной практике, в ускорительной технике, томографах, установках для управляемой термоядерной реакции. С помощью сверхпроводимости стало возможным многократно повысить чувствительность многих измерительных приборов. Такие приборы названы сквидами (от англ. Superconducting Quantum Interference Devices ). Особо следует подчеркнуть внедрение сквидов в технику, в том числе и в современную медицину.

Наибольшее применение сверхпроводники нашли в настоящее время в области создания сильных магнитных полей. Современная промышленность производит из сверхпроводников второго рода разнообразные провода и кабели, используемые для изготовления обмоток сверхпроводящих магнитов, с помощью которых получают значительно более сильные поля (более 20 Тл), чем при использовании железных магнитов.

Сверхпроводящие магниты являются и более экономичными. Так, например, для поддержания в медном соленоиде с внутренним диаметром 4 см и длиной 10 см поля 100 кГс необходима электрическая мощность не менее 5100 кВт, которую нужно полностью отвести водой, охлаждающей магнит. Это означает, что через магнит надо прокачивать не менее 1 м 3 воды в минуту, а затем ее еще охлаждать. В сверхпроводящем варианте такой объем магнитного поля создается достаточно просто, необходимо лишь сооружение гелиевого криостата для охлаждения обмоток, что является несложной технической задачей.

Другое преимущество сверхпроводящих магнитов состоит в том, что они могут работать в короткозамкнутом режиме, когда поле «заморожено» в объеме, что обеспечивает практически не зависящую от времени стабильность поля. Это свойство очень важно при исследованиях веществ методами ядерного магнитного и электронного парамагнитного резонансов, в томографах и т. п.

Еще одно применение сверхпроводников − создание подшипников и опор без трения. Если над металлическим кольцом с током поместить сверхпроводящую сферу, то на ее поверхности в силу эффекта Мейснера индуцируется сверхпроводящий ток, что приводит к появлению сил отталкивания между кольцом и сферой, и сфера может повиснуть над кольцом.


Подобный же эффект может наблюдаться, если над сверхпроводящим кольцом поместить постоянный магнит. На этом может быть основано создание, например, новых видов транспорта. Речь идет о создании поезда на магнитной подушке, в котором будут полностью отсутствовать потери на трение о колею дороги. Модель такой сверхпроводящей дороги длиной 400 м была построена в Японии еще в 1970-х годах. Расчеты показывают, что поезд на магнитной подушке сможет развивать скорость до 500 км/ч. Такой поезд будет «зависать» над рельсами на расстоянии 2−3 см, что и даст ему возможность разогнаться до указанных скоростей.

В настоящее время широко используются сверхпроводящие объемные резонаторы, добротность которых может достигать . С одной стороны, такие устройства позволяют получать высокую частотную избирательность. С другой стороны, сверхпроводящие резонаторы широко используются в сверхпроводящих ускорителях, позволяя существенно уменьшить мощность, требуемую для создания ускоряющего электрического поля.

Применение сверхпроводимости может привести к созданию сверхбыстрых электронно-вычислительных машин. Речь идет о так называемых криотронах − переключающих сверхпроводящих элементах. Такие устройства могут легко сочетаться со сверхпроводящими запоминающими элементами. Важным преимуществом криотронов перед обычными полупроводниковыми устройствами является отсутствие потребности в энергии в стационарном состоянии. После создания переходов Джозефсона было предложено заменить ими криотроны, и оказалось, что время переключения такой системы составляет около 10 -12 с. Именно это и открывает широкие перспективы для создания мощнейших вычислительных машин, но пока эти разработки являются лишь лабораторными образцами.

Наиболее перспективными направлениями широкого использования высокотемпературных сверхпроводников считаются криоэнергетика и криоэлектроника. В криоэнергетике уже разработана методика изготовления достаточно длинных (до нескольких километров) проводов и кабелей на основе висмутовых ВТСП-материалов. Этого уже достаточно для изготовления небольших двигателей со сверхпроводящей обмоткой, сверхпроводящих трансформаторов, катушек индуктивности и т. д. На основе этих материалов созданы сверхпроводящие соленоиды, обеспечивающие при температуре жидкого азота (77 К) магнитные поля порядка 10000 Гс.

В криоэлектронике разработана методика изготовления пленочных сквидов, которые по своим характеристикам практически не уступают гелиевым аналогам. Освоена методика получения совершенных магнитных экранов из ВТСП, в частности, для исследования биомагнитных полей. Из ВТСП созданы антенны, передающие линии, резонаторы, фильтры, смесители частоты и т. д.

Темп технологических и прикладных исследований очень высок, так что, возможно, промышленность освоит выпуск изделий из высокотемпературных сверхпроводников раньше, чем будет достоверно выяснена природа сверхпроводимости в металлооксидных соединениях.

Контрольные вопросы

1. Каково равновесное состояние электронного газа в проводнике в отсутствие электрического поля?

2. Поясните механизм дрейфа электронов под действием внешнего поля.

3. Какими соотношениями определяется подвижность носителей заряда в полупроводниках? Какие факторы определяют величину подвижности?

4. Чем определяется электропроводность σ n металлов?

5. Чем обусловлено электросопротивление металлов? Какова его зависимость от температуры?

6. О чем говорит закон Видемана – Франца?

7. Почему при расчётах электропроводности проводников учитывается полная концентрация носителей заряда, если реально в проводимости участвуют только ферми-электроны?

8. Привести график и дать объяснения зависимости проводимости легированного полупроводника с разной степенью легирования от температуры.

9. Указать основные свойства сверхпроводящего состояния

10. Дать качественное описание механизма возникновения сверхпроводимости с помощью БКШ-теории.

11. Описать направления применения сверхпроводимости.

Идея высокотемпературной сверхпроводимости (ВТСП) в органических соединениях была выдвинута в 1950г. Ф.Лондоном и лишь 14 лет спустя появился отклик на эту идею в работах американского физика В.Литтла, вызвавший критические отзывы, отрицающие возможность ВТСП в неметаллических системах. Таким образом, хотя идея ВТСП родилась ы работе Ф. Лондона в 1950г., годом рождения проблемы следует считать время появления первых, пока, правда, малочисленных потоков информации по ВТСП - 1964г.. Если рассмотреть эволюцию температуры сверхпроводящего перехода, то станет ясно, что рост температуры сверхпроводящего перехода приводил к возможности использования хладагентов со все более высокой температурой кипения (жидкий гелий, водород, неон, азот). Хотя до азотных температур перехода, открытых недавно в металлокерамиках, практически использовался для охлаждения жидкий гелий, однако скачки в росте температуры перехода дают право положить их в основу периодизации ВТСП о гелиевом, водородном, неоновом и, наконец, азотном периодах ВТСП. Так Nb 3 Sn сменился Nb - Al - Ge, затем наибольшая температура была обнаружена d 1973-81гг. у Nb 3 Ge (23,9 K), которая оставалась рекордной вплоть до сверхпроводимости металлокерамиками. La - Sr - Cu - O при 30 К в 86г., вырастая до 100 К на материале I - Ba - Cu - O.

Ключевым для проблемы ВТСП является вопрос критической температуры от характеристики вещества. С открытием в 86 нового класса сверхпроводящих материалов с более высокими, чем ранее критическими температурами, во всем мире развернулись работы по изучению по изучению свойств ВТСП с целью определения возможности их применения в различных областях науки и техники. Интерес к ВТСП объясняется в первую очередь тем, что повышение рабочей температуры до азотной позволит существенно упростить и удешевить системы криогенного обеспечения, повысить их надежность. Для успешного применения ВТСП в сильноточных устройствах (соляноидах, накопителях энергии, электромагнитах, транспорте с магнитным подвесом) необходимо решить ряд вопросов. Одной из важнейших проблем при создании сильноточных устройств с использованием ВТСП является проблема обеспечения устойчивой работы обмоток с током. Проблема стабилизации ВТСП включает в себя несколько аспектов. Внутренним свойством сверхпроводимости является скачкообразный характер проникновения в них магнитного поля. Этот процесс сопровождается выделением части запасенной энергии магнитного поля при его распределении. Поэтому, наиболее важное направление стабилизации сверхпроводников - их стабилизация против сигналов потока. Крое того, проводники, внутренне стабилизированные против сигналов потока, при работе подвергаются действию различного рода возмущений как механического, так и электромагнитного характера, тоже сопровождающиеся выделением энергии.

Основные характеристики композитных ВТСП-проводников.

Традиционные сверхпроводники второго рода (сплавы Nb - Ti, соединение Nb 3 Sn) применяются в сверхпроводящих магнитных системах в виде композитов с матрицей из нормального метала с высокими тепло- и электропроводностью. Наличие пластичной матрицы (чаще всего медной) значительно облегчает изготовление тонких длинномерных проводников волочением или прокаткой, то есть сверхпроводящие материалы отличаются хрупкостью. Стабильность сверхпроводимости - состояние относительно скачков магнитного потока - достигается путем изготовления проводников с весьма малым диаметром отдельных сверхпроводящих или же лент с малой толщиной сверхпроводящего слоя. По этим же причинам ВТСП-проводники в большинстве случаев изготавливаются в форме композитов, имеющих малую толщину или диаметр. Дополнительная причина применения нормального металла связана с необходимостью защиты ВТСП-материала от влажности и других факторов окружающей Среды, вызывающих деградацию оксидного сверхпроводника. Наилучшие результаты получены при использовании серебряной матрицы или обмотки сверхпроводника: кроме того, что серебро лишь в минимальной степени реагирует с ВТСП или его исходной продукции даже при высокой температуре синтеза, серебро отличается высокой диффузионной проницательностью для кислорода, что необходимо при синтезе и обжиге ВТСП.

В настоящее время все усилия в области ВТСП наряду с совершенствованием их свойств и способов получения направлены на создание изделий на основе ВТСП, пригодных для применения в радиоэлектронных системах для детектирования, аналоговой и цифровой обработки сигналов. (см. рис.1).

Основными достоинствами ВТСП являются отсутствие потерь на постоянном и сравнительно небольшие потери на переменном токах, возможность экранирования магнитных и электромагнитных полей, возможность передачи сигналов с крайне малыми искажениями.

Параметром, непосредственно определяющим высокочастотные свойства ВТСП материалов является их поверхностное сопротивление. В обычных металлах поверхностное сопротивление увеличивается пропорционально квадратному корню из частоты в то время, как в ВТСП - пропорционально ее квадрату. Однако, благодаря тому, что начальное значение поверхностного сопротивления (на постоянном токе) у ВТСП на несколько порядков ниже, чем у металлов, высококачественные ВТСП сохраняют преимущества по сравнению с металлами при частоте до нескольких сотен гигагерц.

Интерес к вопросу практического использования сверхпроводников появился в 50-х гг, когда были открыты сверхпроводники второго рода с высокими критическими параметрами как по значению плотности тока, так и по величине магнитной индукции. В настоящее время использования явления сверхпроводимости приобретает все больше практическое значение.

Применение сверхпроводников потребовало решения ряда новых задач, в частности, интенсивного развития материаловедения в области низких температур. При это исследовались не только сверхпроводники собственно, но и конструкции и изоляционные материалы.

стандартный источник питания

сигнал детекти- аналоговая цифровая инфор-

шум рование обработка обработка мация

постоянный ток джозефсоновские логика

радиочастоты приборы

сквиды аналого-цифровой

преобразователь

СВЧ- субмм. волны

дискретизатор

СИС-смесители

СИС квадратурный

детектор СП - полевой

транзистор

джозефсоновский

смеситель прибор на неравно-

весных носителях

джозеновский

параметрический приборы линий

усилитель передачи

сверхпроводящий конвольвер (для

болометр вычисления свертки)

преобразователь

оттоэлектронные

Наибольшее распространение из сверхпроводящих материалов в электротехнике получили сплав ниобий-титан и интерметаллид ниобий-олово. Технологические процессы изготовления исключительно тонких ниобий-титановых нитей и их стабилизации достигли весьма высокого уровня развития. При создании многожильных проводников на основе ниобий-олова широкое применение находит так называемая бронзовая технология.

Развитие сверхпроводниковой техники также связано с созданием ожижителей и рефрижераторов все большей хладопроизводительности на уровне температур жидкого гелия.

Наиболее широкое реальное применение сверхпроводимость находит при создании крупных электромагнитных систем. В 80-х гг в СССР был осуществлен запуск первой в мире установки термоядерного синтеза Т-7 со сверхпроводящими катушками тороидального магнитного поля.

Сверхпроводящие катушки используются также для пузырьковых водородных камер, для крупных ускорителей элементарных частиц. Изготовление таких катушек для ускорителей довольно сложно, так как требование исключительно высокой однородности магнитного поля вызывает необходимость точного соблюдения заданных размеров.

В последние годы имеет место все более широкое использование явления сверхпроводимости для турбогенераторов, электродвигателей, униполярных машин, топологических генераторов, жестких и гибких кабелей, коммутационных и токоограничивающих устройств, магнитных сепараторов, транспортных систем и др.. Следует также отметить важное направление в работах по сверхпроводимости - создание измерительных устройств для измерения температур, расходов, уровней, давлений и т.д.

На настоящий момент имеются два главных направления в области применения сверхпроводимости. Это прежде всего магнитные системы различного назначения и затем - электрические машины (прежде всего турбогенераторы).

Применение сверхпроводимости в турбогенераторах большой мощности перспективно потому, что именно здесь удается достигнуть того, чего при других технических решениях сделать невозможно, а именно, уменьшить массу и габариты машины при сохранении мощности. В обычных машинах это уменьшение всегда связано с увеличением потерь и трудностями обеспечения высокого КПД. Здесь этот вопрос решается радикально: массу турбогенераторов можно увеличить в 2-2,5 раза, в тоже время в связи с отсутствием потерь в роторе удается повысить КПД примерно на 0,5% и приблизиться для крупных турбогенераторов к КПД порядка 99,3%. Повышение КПД турбогенераторов на 0.1% компенсирует затраты, связанные с созданием генераторов на 30%. В этих условиях экономия энергии, получаемая за счет снижения потерь, очень быстро оправдывает те затраты, которые вкладываются в создание новых сверхпроводниковых машин. Экономически это, конечно, оправдано, но все дело в том, что для того, чтобы выйти в энергетику с большими машинами, нужно пройти очень сложный путь создания машин все больших мощностей. При этом нужно решать и более трудную проблему - обеспечение высокой надежности. Очень важным моментом в этой связи, является отработка токовводов при создании машин высокой мощности. Перепад температур на токовводах составляет около 300К, они имеют внутренние источники тепловыделения, и поэтому представляют собой один из наиболее напряженных в эксплуатационном отношении узлов сверхпроводникового электротехнического устройства, являясь потенциально опасным источником аварий в криогенной зоне. Поэтому, при разработке токовводов, в первую очередь необходимо обращать внимание на надежность их работы, обеспечивая ее даже в ущерб тепло- и электрохарактеристикам токовводов.

табл.1 “Сферы применения сверхпроводимости”

Применение

Примечания

крупномасштабное

а) экранирование

Сверхпроводник не пропускает магнитный поток, следовательно, он экранирует электромагнитное излучение. Используется в микроволновых устройствах, защита от излучения при ядерном взрыве.

сильноточные устройства

  • а) магниты
  • - научно-исследовательское оборудование
  • - магнитная левитация

НТСП магниты используются в ускорителях частиц и установках термоядерного синтеза.

Интенсивно проводятся работы по созданию поездов на магнитной подушке. Прототип в Японии использует НТСП.

другие статические применения

  • а) передача энергии
  • б) аккумулирование
  • в) вращающиеся электрические машины
  • г) вычислительные устройства

Прототипные линии НТСП продемонстрировали свою перспективность.

Возможность аккумулировать электроэнергию в виде циркулирующего тока

Комбинация полупроводниковых и сверхпроводящих приборов открывает новые возможности в конструкциировании аппаратуры.

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются так называемые сверхпроводники II рода , в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока. Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитого поля H c2 .

Первым промышленным применением сверхпроводимости было создание сверхпроводящих магнитов с высокими критическими полями.

Следующее практическое применение сверхпроводимости относится к технике чувствительных электронных приборов. Экспериментальные образцы приборов с контактом Джозефсона могут обнаруживать напряжения порядка 10 -15 Вт. Техника сверхпроводимости и особенно контакты Джозефсона оказывают все большее влияние на метрологию. С помощью джозефсоновских контактов создан стандарт 1 В. Был разработан также первичный термометр для криогенной области, в которой резкие переходы в некоторых веществах используются для получения реперных (постоянных) точек температуры. Новая техника используется в компараторах тока, для измерений радиочастотной мощности и коэффициента поглощения, а также для измерений частоты. Она применяется также в фундаментальных исследованиях таких, как: измерение дробных зарядов атомных частиц и проверка теории относительности.

Сверхпроводимость будет широко использоваться в компьютерных технологиях. Здесь сверхпроводящие элементы могут обеспечивать очень малые времена переключения, ничтожные потери мощности при использовании тонкопленочных элементов и большие объемные плотности монтажа схем. Разрабатываются опытные образцы тонкопленочных джозефсоновских контактов в схемах, содержащих сотни логических элементов и элементов памяти.

Наиболее интересные возможные промышленные применения сверхпроводимости связаны с генерированием, передачей и использованием электроэнергии. Еще одно возможное применение сверхпроводников – в мощных генераторах тока и электродвигателях малых размеров. Обмотки из сверхпроводящих материалов могли бы создавать огромные магнитные поля в генераторах и электродвигателях, благодаря чему они были бы значительно более мощными, чем обычные машины. Опытные образцы давно уже созданы, а керамические сверхпроводники могли бы сделать такие машины достаточно экономичными. Рассматриваются также возможности применения сверхпроводящих магнитов для аккумулирования электроэнергии, в магнитной гидродинамике и для производства термоядерной энергии.


Контрольные вопросы:

1. Какие явления наблюдаются при сверхпроводимости?

а. Скачок удельной теплоемкости.

б. Небольшое изменение объема.

в. Резкое уменьшение поглощения ультразвука.

г. Все вышеперечисленные.

2. Каким физическими свойствами обладает вещество, находящееся в сверхпроводящем состоянии?

а. Выталкивание электрического поля.

б. Высокой напряженностью электрического поля данного вещества.

в. Высокой магнитной проницаемостью.

г. Выталкиванием магнитного поля, идеальной проводимостью.

3. При каких условиях разрушается сверхпроводящее состояние?

а. При пропускании через сверхпроводник тока такой величины, при которой на поверхности образца магнитное поле, вызванное этим током, становится равным критическому.

б. При воздействии магнитного поля достаточной вели­чины, т.е. критической.

в. Все вышеперечисленные.

4. Что такое проводник второго рода?

а. Тела, в которых электрический заряд может перемещаться по всему его объёму.

б. Перенесение в них зарядов не сопровождается химическими превращениями.

в. Перенесение в них зарядов ведёт к химическим изменениям.

г. Тела в которых практически отсутствуют свободные заряды.

5. Каковы результаты исследования явления высокотемпературной сверхпроводимости?

а. В 1986 г. критическая температура перехода в сверхпроводящее состояние понизилась более чем на 100° k.

б. В 1986 г. критическая температура перехода в сверхпроводящее состояние повысилась более чем на 100° k.

в. В 1989 г. критическая температура перехода в сверхпроводящее состояние не изменилась.

г. В 1989 г. критическая температура перехода в сверхпроводящее состояние повысилась более чем на 100° k.

Источник задания: Решение 3736. ЕГЭ 2017. Русский язык. И.П. Цыбулько. 36 вариантов.

(1)Сверхпроводники используют для создания устройств, которые технически невозможно или экономически невыгодно изготавливать с применением традиционных проводниковых материалов - меди и алюминия. (2)<...> мощные магнитные системы для установок термоядерного синтеза или ускорителей элементарных частиц, сверхбыстродействующие ограничители тока, медицинские томографы, спектрометры высокого разрешения, образцы перспективной военной техники, поезда, на магнитной подушке созданы с применением сверхпроводящих материалов. (3)Устройства, изготовленные с использованием сверхпроводящих материалов, характеризуются значительно меньшими размерами и массой.

Задание 1. Укажите два предложения, в которых верно передана ГЛАВНАЯ информация, содержащаяся в тексте. Запишите номера этих предложений.

1) Для создания таких устройств, которые невозможно или невыгодно изготавливать с использованием обычных проводников, применяют сверхпроводники, помогающие сделать эти устройства более компактными и лёгкими.

2) При создании мощных магнитных систем для установок термоядерного синтеза или ускорителей элементарных частиц, сверхбыстродействующих ограничителей тока, медицинских томографов, спектрометров высокого разрешения, образцов перспективной военной техники, поездов на магнитной подушке иногда используют сверхпроводящие металлы.

3) Для создания сооружений, которые нецелесообразно возводить с применением лишь традиционных проводниковых материалов - меди и алюминия, используют также сверхпроводники.

4) Сверхпроводники используют при создании устройств, изготовление которых из обычных проводников невозможно или экономически невыгодно, причём применение сверхпроводников делает устройства менее объёмными и тяжёлыми.

5) Для изготовления таких устройств, которые должны обладать небольшим объёмом и массой при разнообразии выполняемых ими функций, используют проводники.

Решение.

В этом задании выбираем ДВА предложения, которые верно передают самое важное содержание текста. Скорее всего, эти предложения будут содержать одинаковую информацию.

1. Выделяем главную информацию текста.

(1)Сверхпроводники используют для создания таких устройства, которые экономически невыгодно изготавливать из обычных проводников.(3) Эти устройства меньше по размеру и массе.

2. Находим предложения, в которых эта информация передана без искажений и ошибок.

1) Подходит.

2) Передана второстепенная информация.

3) Не вся информация.

4) Подходит.

5) Не вся информация.

Проверка. Выбранные варианты должны содержать одну и ту же информацию.

1) Для создания таких устройств, которые невозможно или невыгодно изготавливать с использованием обычных проводников, применяют сверхпроводники, помогающие сделать эти устройства более компактными и лёгкими. (Сверхпроводники используют для создания устройств, которые изготовить из обычных проводников невозможно или невыгодно, к тому же сверхпроводники делают устройства легче и компактнее.)

4) Сверхпроводники используют при создании устройств, изготовление которых из обычных проводников невозможно или экономически невыгодно, причём применение сверхпроводников делает устройства менее объёмными и тяжёлыми. (Сверхпроводники используют для создания устройств, которые изготовить из обычных проводников невозможно или невыгодно, к тому же сверхпроводники делают устройства легче и компактнее.)

В ответ выписываем две цифры без пробелов и запятых.

При температуре ниже определённого значения некоторые вещества теряют способность препятствовать прохождению электрического тока. Их электрическое сопротивление становится нулевым. Это свойство называют сверхпроводимостью.

Открытие сверхпроводимости

Явление сверхпроводимости открыл в 1911 г. голландский физик Хейке Камерлинг-Оннес , исследуя зависимость электрического сопротивления металлов от температуры. Сверхнизкими температурами он начал интересоваться ещё в 1893 г. А в 1908 г. ему удалось получить жидкий гелий. Охлаждая с его помощью металлическую ртуть, он с удивлением обнаружил, что при температуре, близкой к абсолютному нулю, электрическое сопротивление ртути скачком падает до нуля.

Согласно существовавшим в то время физическим теориям, с понижением температуры сопротивление должно плавно падать. Но существовала и такая точка зрения, что при очень низкой температуре движение электронов прекратится, сопротивление вырастет, и вещество вообще перестанет проводить электрический ток.

В начале эксперимента всё происходило согласно теории. С понижением температуры сопротивление ртути плавно уменьшалось. Но когда температура опустилась до 4,15 К, ртуть внезапно вообще потеряла сопротивление. Она перешла в совершенно новое состояние, которое было названо сверхпроводимостью .

Природа сверхпроводимости

Что же происходит в металлах при понижении их температуры до значений, близких к абсолютному нулю?

Каждый атом состоит из ядра, заряженного положительно, и электронов, имеющих отрицательный заряд. Электроны вращаются вокруг ядра по орбитам. Чем ближе орбита к ядру, тем сильнее электрон к нему притягивается. Электроны, находящиеся на внешней орбите, называются валентными. Они легко отрываются от ядра, покидают свою орбиту и свободно перемещаются внутри кристаллической решётки. Под воздействием внешнего электрического поля их движение становится упорядоченным, они начинают двигаться в одном направлении. В металле возникает электрический ток. Однако на пути электронов возникают препятствия в виде узлов кристаллических решёток, их дефектов, или атомов примесей, которые присутствуют в веществе. Поэтому возникает электрическое сопротивление току. С понижением температуры нарушения структуры решёток, связанные с тепловыми колебаниями атомов, уменьшаются. Структура становится более правильной. Следовательно, уменьшается и сопротивление.

Объяснение сверхпроводимости на микроскопическом уровне было дано в теории, названной БКШ в честь её создателей - американских физиков Джона Бардина, Леона Купера и Джона Шриффера . В её основу положены куперовские пáры электронов .

Леон Нил Купер

При обычных условиях электроны являются фермионами, частицами с полуцелым спином, имеющим значение -1/2 или +1/2. Каждый из фермионов описывается своей волновой функцией. Двигаются они также поодиночке и самостоятельно преодолевают препятствия на своём пути. Но при определённых условиях они образуют пáры. Электроны со значениями спинов +1/2 и -1/2 объединяются и образуют связанное состояние, которое называют кýперовской парой . Эта пара имеет нулевой спин и удвоенный заряд электрона. А раз её суммарный спин равен нулю, то она обладает свойствами бозона. Бозоны образуют «бозе-конденсат», к которому присоединяются все свободные бозоны. Они становятся единым целым, способным двигаться, не реагируя ни на какие препятствия на своём пути. Так возникает ток сверхпроводимости.

Критическая температура

Оказалось, что не только ртуть обладает сверхпроводимостью при температурах, близких к абсолютному нулю. Такое свойство открыли у свинца, олова, таллия, урана и других металлов. Сверхпроводимость проявляется скачкообразно, когда вещество охлаждается до определённой температуры. Температуру Т с , при которой этот скачок происходит, называют критической. У каждого элемента, обладающего сверхпроводимостью, она своя. Например, ниобий переходит в состояние сверхпроводимости при 9 К, а вольфрам при 0,012 К.

Сверхпроводимостью обладают не только чистые металлы, но и некоторые сплавы. Например, сплав ртути с золотом и оловом. Существуют даже сверхпроводящие сплавы, у которых один из элементов, входящих в его состав, может и не быть сверхпроводником.

Если кольцо из сверхпроводника охладить до критической температуры и возбудить в нём электрический ток, то он будет течь даже после того, как уберут источник тока, и до тех пор, пока в кольце будет поддерживаться температура ниже критической. Но так происходит только в электрическом поле постоянного электрического тока. В переменном электрическом поле сопротивление сверхпроводника увеличивается, если увеличивается частота переменного тока.

В 1983 - 1986 г.г. были созданы новые сверхпроводники. Это сверхпроводящие керамики, сверхпроводники на основе железа и др. Сверхпроводимость в них наступала при температурах, значительно превышающих температуру абсолютного нуля. В 1993 г. было открыто вещество, критическая температура которого равна 135 К.

Эффект Мейснера

В 1933 г. немецкий физик Вальтер Фриц Мейснер вместе с другим немецким физиком Робертом Оксенфельдом открыл ещё одно удивительное и важное свойство сверхпроводников - выталкивание магнитного поля из своего объёма . Это явление было названо эффектом Мейснера .

Вальтер Фриц Мейснер

Эффект Мейснера наглядно демонстрирует опыт, поставленный в 1945 г. российским физиком Владимиром Константиновичем Аркадьевым.

В этом эксперименте постоянный магнит, поднесённый к чашечке, сделанной из сверхпроводящего металла, висит в пространстве над ней. Низкая температура чашечки поддерживается за счёт того, что её ножки погружены в жидкий гелий. Но почему же магнит не притягивается к чашечке? Дело в том, что незатухающий ток внутри сверхпроводника создаёт магнитное поле, направление которого противоположно направлению внешнего магнитного поля, создаваемого магнитом. Это поле уравновешивает и отталкивает внешнее поле, благодаря чему магнит будто парит в пространстве. Это явление называется магнитной левитацией.

Если поместить сверхпроводник в магнитное поле и напряжённость этого поля увеличивать, то при определённом значении напряжённости, равной Н с , сверхпроводимость исчезает. Такое магнитное поле называется критическим полем. При напряжённости выше Н с сверхпроводник становится обычным проводником. Чем ниже температура сверхпроводника, тем большей должна быть напряжённость поля, способного разрушить сверхпроводимость.

В чистых сверхпроводников, состоящих из одного вещества, магнитное поле будет выталкиваться до тех пор, пока напряжённость магнитного поля не достигнет значения Н с . Такие сверхпроводники называются сверхпроводниками I рода .

А для сверхпроводящих сплавов таких значений два: Н с1 и Н с2 . Когда напряжённость внешнего магнитного поля достигнет значения Н с1 , это поле уже начнёт проникать внутрь сверхпроводника. Но его электрическое сопротивление всё ещё остаётся нулевым, и явление сверхпроводимости наблюдается. А когда напряжённость станет равна Н с2 , сверхпроводимость исчезнет совсем. Такие сверхпроводники называются сверхпроводниками II рода .

Применение сверхпроводников

Открытие сверхпроводимости произвело настоящий переворот в науке. Сразу же появилось множество идей по использованию этого уникального явления в технике.

При сверхнизких температурах ток проходит в сверхпроводниках практически без потерь. Поэтому их используют при создании различных кабелей, коммутационных устройств, электродвигателей, турбогенераторов, приборов для измерения температуры, давления и др. Они идеально подходят для создания электромагнитов. С их помощью создаётся электромагнитное поле в магнитно-резонансном томографе. Это позволяет врачам получать качественные изображения тканей внутренних органов человека в разрезе, хотя на самом деле орган не травмируется.

В установках термоядерного синтеза, в крупных ускорителях элементарных частиц используют сверхпроводящие катушки.

Обмотки сверхпроводящих магнитов, с помощью которых создают сильные магнитные поля, изготавливают из сверхпроводников II рода. Сверхпроводящие магниты гораздо экономичнее обычных ферромагнитов.

В 2003 г. в Японии провели испытание поезда на магнитной подвеске. Его движение основано на использовании эффекта Мейснера (магнитной левитации). Электромагнитное поле рельсов отталкивается сверхпроводниками, находящимися в подвеске поезда. И поезд словно летит над рельсами, не касаясь их. Это позволяет ему развивать огромную скорость, сравнимую со скоростью самолёта. Конечно, такие поезда требуют специальных рельсов. Но энергии они затрачивают в десятки раз меньше, чем самолёты. Подобные поезда созданы в Германии, Китае и Южной Корее.