Что называют верхним пределом роста популяции. IV. Динамика популяций. Экспериментальные исследования роста популяций

Любая популяция теоретически способна к неограничен­ному росту численности, если ее не лимитируют факторы внешней среды. Даже самый медленно размножающийся вид способен в короткое время произвести столько особей, что для них не хватит места на земном шаре. Всего за пять поколений, т. е. за 1–1,5 летних месяца, одна единственная тля может оставить более 300 млн. потомков. Если бы все зародыши сохранялись, а все потомство выживало, численность любой популяции через определенные интервалы увеличивалась бы в геометрической прогрессии , и это несмотря на то, что одни производят за всю жизнь всего несколько яиц или детенышей, а другие – тысячи и даже миллионы зародышей. Рост в геометрической прогрессии выражается на графике экспоненциальной кривой . В.И. Вернадский назвал этот процесс «давлением жизни» .

Фактически во всех живых организмах заложена способность размножаться беспредельно. Эта способность делает жизнь очень мощной силой на Земле. Огромная живая масса организмов поддерживает круговорот веществ на планете, создает горные породы, почвы, регулирует состав вод и атмосферы. Но в природе биотический потенциал популяции никогда не реализуется полностью. Главный ограничитель на пути к беспредельному размножению организмов – нехватка ресурсов , самых необходимых: для растений – минеральных солей, углекислого газа, воды, света; для животных – пищи, воды; для микроорганизмов – разнообразных потребляемых ими соединений. Запасы этих ресурсов не бесконечны, в разных частях планеты они имеют свои пределы, и этим сдерживается размножение видов. Второй ограничитель – влияние неблагоприятных условий , замедляющих рост и размножение организмов, даже если есть необходимые для этого ресурсы. Наконец, гибель зародышей или подрастающих молодых особей от врагов и болезней . Так, тысячи желудей, которые ежегодно производит один большой дуб, оказываются съеденными белками, кабанами, сойками, мышами, насекомыми, или поражаются плесневыми грибками и бактериями, или гибнут на стадии проростков по разным причинам. В результате лишь из считанных желудей вырастают взрослые деревья.

Общие изменения численности популяции складываются за счет четырех явлений: рождаемости, смертности, вселения и выселения особей (иммиграция и эмиграция).

Рождаемость (скорость рождаемости) число новых осо­бей, появившихся в популяции за единицу времени в резуль­тате размножения.

Различают максимальную и фактическую рождаемость. Максимальная рождаемость – максимальная реализация воз­можности рождения при отсутствии лимитирующих факторов среды. Фактическая рождаемость – реальная реализация воз­можности рождения.

Различают абсолютную и удельную рождаемость. Абсолют­ная (общая) рождаемость, или скорость рождаемости число особей (яиц, семян и т. п.), родившихся (от­ложенных, продуцированных и т. д.) за некоторый промежу­ток времени.

Удельная рождаемость – отношение скорости рождае­мости к исходной численности. Эта величина зависит от интенсивности размножения осо­бей: для бактерий – час, для фитопланктона – сутки, для насекомых – неделя или месяц, для крупных млекопитаю­щих – год.

Величина рождаемости зависит от многих причин. Большое значение имеет доля особей, способных в данный период к размножению, что определяется соотношением полов и возра­стных групп. Важна также частота последовательности генера­ций. Так, среди насекомых различают моновольтинные и поливольтинные виды. Первые дают одну, вторые – несколько генераций за год. Например, у тлей за сезон насчитывается до 15 партеногенетических поколений. По числу периодов раз­множения в течение жизни различают моноциклические и полициклические виды. Моноцикличность, или однократное размножение, свойственна обычно видам с короткой продол­жительностью жизни в половозрелом состоянии (лососевые ры­бы, поденки, майские жуки и многие другие насекомые). Поли­цикличность характеризуется повторным размножением осо­бей и присуща большинству позвоночных животных и ряду беспозвоночных, например ракообразным.

У растений выделяют монокарпические и поликарпические виды, т. е. с однократным и многократным размножением в те­чение жизни.

Размножа­емость популяции, как правило, не бывает прямо пропорци­ональна плодовитости. Плодовитость сильно зависит от степе­ни развития заботы о потомстве или обеспеченности яиц пита­тельными материалами. Среди рыб наибольшее количество икринок выметывают виды с пелагической икрой – сельди, тресковые, камбаловые и др. Например, сахалинская сельдь продуцирует 38–46 тыс. мелких, в доли миллиметра, икри­нок. У лососевых, зарывающих икру в грунт, развивается меньшее число яиц, но более крупных размеров. Средняя пло­довитость амурской горбуши 1300–1500 икринок диаметром 4–6 мм. Наиболее крупная икра у акул и химер, до 6–8 см. Яйца этих рыб имеют к тому же плотную защитную оболоч­ку. Количество их очень невелико – несколько штук на одну самку.

У видов, оберегающих и выкармливающих свой молодняк, плодовитость резко понижена. Размер кладки у птиц разных видов варьирует уже не в тысячи раз, как у рыб, а в пределах от одного яйца (у некоторых хищников, пингвинов, чистиков и др.) до 20–25 (максимальное количество яиц у куриных, на­пример, у серой куропатки).

Большая плодовитость вырабатывается у видов также в ус­ловиях более высокой смертности, особенно при сильном дав­лении со стороны хищников. Отбор на плодовитость компенси­рует высокую норму гибели в популяциях. Поэтому при высокой плодовитости рост численности популяции может быть весьма низким. В различных популяциях одного вида плодови­тость обычно тем выше, чем более неблагоприятны занимаемые ими места обитания. Так, у многих млекопитающих – зайцев, мышей, полевок – число детенышей в помете на границах аре­ала больше, чем в его центре.

Гипотеза дифференцированной специализации полов (В. А. Геодокян) – дифференциация полов происходит по двум основным направлениям эволюции: изменению (мужской пол) и сохранению (женский пол). Чем больше в популяции женских особей, тем лучше сохраняется ее генотипическая структура; чем больше мужских особей, тем больше скорость или величина изменения этой структуры.

Смертность (скорость смертности) число особей, по­гибших в популяции за единицу времени (от хищников, бо­лезней, старости и других причин). Смертность – величина обратная рождаемости.

Различают минимальную и фактическую смертность. Ми­нимальная смертность – минимально возможная величина смертности. Фактическая смертность – реальная величина смертности.

Различают абсолютную и удельную смертность. Абсолют­ная (общая) смертность, или скорость смертности число особей, погибших за промежуток времени.

Удельная смертность (а) – отношение скорости смертнос­ти к исходной численности.

Скорость роста популяции изменение численности попу­ляции за единицу времени. Скорость роста популяции может быть положительной, нулевой и отрицательной. Она зависит от показателей рождаемости, смертности и миграции (вселе­ния – иммиграции и выселения – эмиграции). Увеличение (прибыль) численности происходит в результате рождаемости и иммиграции особей, а уменьшение (убыль) численности – в результате смертности и эмиграции особей.

Различают абсолютную и удельную скорость роста популяции. Абсолютная (общая) скорость роста – изменение численности популяции за промежуток времени.

Удельная скорость роста – отношение скорости роста к исходной численности.

При отсутствии лимитирующих факторов среды удельная скорость роста равна величине, которая характеризует свой­ства самой популяции и называется удельной (врожденной) ско­ростью роста популяции или биотическим потенциалом вида.

Величина биотического потенциала очень различается у разных видов. Например, самка косули способна произвести за жизнь 10–15 козлят, трихина отложить 1,8 тыс. личинок, самка медоносной пчелы – 50 тыс. яиц, рыба-луна – до 3 млрд. икринок.

Однако в природе, в связи с действием лимитирующих фак­торов, биотический потенциал популяции никогда не реали­зуется полностью. Его величина обычно складывается как раз­ность между рождаемостью и смертностью в популяции:

где b – число родившихся, d – число погибших особей в популяции за один и тот же период времени.

Когда b = d, r = 0 и популяция находится в стационарном состоянии. Когда b > d, r > 0, численность популяции увели­чивается. Когда b < а, r < 0, численность популяции сокраща­ется. Формула d = b – r позволяет определить смертность, которую трудно измерить непосредственно, а определить r до­статочно просто непосредственными наблюдениями.

Скорость роста может быть выражена в виде кривой роста популяции. Существуют две основные модели роста популяции: J- образная и S -образная.

J-образная кривая (1) отражает неограниченный экспоненциальный рост численности популяции, не зависящий от плотности попу­ляции. Такой тип роста возможен пока биотический потенциал популяции (r ) реализуется полностью. Это продолжается, пока низка конкуренция за ресурсы. Однако после превышения емко­сти среды (предельной плотности насыщения, предельной численно­сти) (К ), произойдет резкое снижение численности.

S-образная (сигмоидная, логистическая) кривая (2) отражает ло­гистический тип роста, зависящего от плотности популяции, при котором скорость роста популяции снижается по мере роста численности (плотности). Скорость роста снижается вплоть до нуля при достижении предельной численности.

Динамика популяций – это процессы изменения ее основных биологических показателей (численности, биомассы, структуры) во времени в зависимости от экологических факторов. ДП – это приспособительный ответ на условия существования вида, одно из наиболее значимых биологических и экологических явлений, т.к. жизнь популяции проявляется в ее динамике.

Важным процессом динамики популяций является рост численности (или просто «рост популяции»), который происходит при освоении организмами новых мест обитаний или после перенесенной катастрофы. Характер роста бывает различным.

Рост популяций у любых видов, от бактерий до человека, имеет общие закономерности. Теоретически численность любого вида может расти бесконечно в силу того, что размножение обычно происходит в геометрической прогрессии. Число потомков, которое может оставить после себя одна особь, носит название биотический потенциал вида . Потомков может быть всего два, как при простом делении клетки надвое (бактерии, амебы, инфузории), а может быть – сотни миллионов (количество икринок, откладываемых за жизнь рядом плодовитых рыб, число мелких семян у многих древесных растений и т.п.).

Динамика роста популяции

N t = N t -1 + B D + C E

Nt– число особей в моментt,

Nt-1- число особей в предыдущий момент,

B- число родившихся,

D- число погибших,

C- число иммигрантов,

E- число эмигрантов

Кривые роста .

Выделяют две основные формы кривых роста - чисто экспоненциальную (J-образную) и сигмоидную (S-образную).

Сигмоидная, или S-образная , кривая описывает ситуацию, при которой в новом для популяции местообитании ее плотность сначала возрастает медленно (лаг-фаза, соответствующая периоду адаптации к условиям), а затем быстро. По прошествии некоторого времени скорость роста замедляется и становится в конечном итоге нулевой: рождаемость полностью уравновешивается смертностью. Говорят, что кривая выходит на плато. Замедление роста популяции объясняется увеличением внутривидовой конкуренции за ресурсы, например, пищу или места гнездования. В результате по механизму отрицательной обратной связи повышается смертность особей и замедляется их размножение (меньший процент спаривающихся животных, рост числа вызванных стрессом выкидышей и т. п.).

Экспоненциальный рост без выхода на плато (J-образная кривая ) соответствует ситуации, при которой после начального адаптационного периода (лаг-фазы) численность особей резко возрастает, но затем рост внезапно прекращается, когда начинает проявляться отсутствовавшее прежде сопротивление среды. Такой рост популяции называют независимым от плотности, поскольку он ничем не сдерживается до последнего момента, за которым следует массовая гибель особей. Эта гибель в свою очередь может вызываться либо наступлением неблагоприятного сезона, либо окончанием сезона размножения самих организмов или их основных жертв.

Рис. 5 Типы кривых роста численности популяции (модели роста популяции):

а – J-образная; б – S-образная; K – поддерживающая емкость среды (максимальный размер популяции, которая может существовать определенном объеме и при регулярной подкормке).

Факторы динамики численности популяций.

Сдерживание роста популяций в природе происходит в результате действия целого ряда факторов. Их делят на две принципиально различные категории: модификаторы и регуляторы:

Факторы-модификаторы воздействуют на численность популяции односторонне, сами не испытывая никакого влияния с ее стороны. Это, прежде всего, абиотические явления: засухи, проливные дожди, наводнения, бури, низкие температуры и т.п. Рост и плодовитость особей подчиняется правилу оптимума, поэтому все отклонения от него изменяют (модифицируют) численность популяций в сторону уменьшения, а приближение к оптимуму стимулирует увеличение численности.

Факторы-регуляторы не только влияют на численность популяций, но и сами изменяют силу своего действия в зависимости от ее плотности. С падением численности воздействие регуляторов ослабевает, с возрастанием – усиливается. Возникает так называемая отрицательная обратная связь , которая способна сдерживать рост популяции. Следует отметить, что чрезмерный, неконтролируемый, рост численности в конечном итоге губителен для любого вида, т.к. может полностью истощить и подорвать ресурсы среды. В эволюции возникло множество механизмов регулирования размножаемости видов.

Типы динамики численности.

1. Стабильный тип – характеризуется малой амплитудой и длительным периодом колебаний численности. Внешне она воспринимается как стабильная. Такой тип свойствен крупным животным с большой продолжительностью жизни, поздним наступлением половозрелости и низкой плодовитостью. Это соответствует низкой норме смертности. Например, копытные (период колебания численности 10-20 лет), китообразные, гоминиды, крупные орлы, некоторые рептилии.

2. Лабильный (флюктуирующий) тип – отличается закономерными колебаниями численности с периодом порядка 5-11 лет и значительной амплитудой (в десятки, иногда сотни раз). Характерны сезонные изменения обилия, связанные с периодичностью размножения. Этот тип свойствен животным с продолжительностью жизни 10-15 лет, более ранним половым созреванием и высокой плодовитостью. Сюда относятся крупные грызуны, зайцеобразные, некоторые хищные, птицы, рыбы и насекомые с длинным циклом развития.

3. Эфемерный ( взрывной тип) динамики отличается неустойчивой численностью с глубокими депрессиями, сменяющимися вспышками массового размножения, при которых численность возрастает в сотни раз. Ее перепады осуществляются очень быстро. Общая длина цикла обычно составляет до 4-5 лет, из них пик численности занимает чаще всего 1 год. Этот тип динамики характерен для короткоживущих (не более 3 лет) видов с несовершенными механизмами адаптации и высокой гибелью (мелкие грызуны и многие виды насекомых).

Факторы, ограничивающие рост популяций

Несмотря на то, что потенциал роста популяций у всех видов организмов весьма высок, в естественных условиях обычно роста как такового не происходит, по крайней мере в течение продолжительного времени. Численность популяций либо довольно стабильна, либо отличается периодическими колебаниями с довольно большой амплитудой вокруг некоторого среднего уровня. Это происходит за счет целого ряда факторов, которые ограничивают рост популяции.

Готовые работы на аналогичную тему

  • Курсовая работа 450 руб.
  • Реферат Потенциальная скорость естественного роста популяции 280 руб.
  • Контрольная работа Потенциальная скорость естественного роста популяции 230 руб.

Потенциал размножения

Составляющими потенциала размножения популяции являются: продолжительность дорепродуктивного периода особей, кратность размножения в течение жизни, продолжительность жизни, количество потомства, производимого за один раз, продолжительность одного репродуктивного цикла. Все эти параметры у разных популяций меняются в широких пределах .

Дорепродуктивный период (включая сюда эмбриональное и постэмбриональное развитие) может составлять от десятков минут (некоторые прокариоты), до полутора десятков лет (человек, слоны, некоторые рыбы, беспозвоночные с длительным личиночным развитием, многие деревья и т.д.).

В течение жизни количество репродуктивных циклов может быть определенным и неопределенным. Минимальное число репродуктивных циклов равно единице. Это характерно для однолетних растений, многих беспозвоночных, некоторых рыб. Для многих растений и большинства позвоночных характерно неопределенное число репродуктивных циклов, зависящее от условий обитания организма. Так, долгоживущие деревья, многие рыбы, некоторые рептилии, птицы могут размножаться не менее нескольких десятков раз за свою жизнь.

Продолжительность жизни организмов также меняется в широких пределах – от десятков минут (интервал между делениями некоторых прокариот) до сотен или даже тысяч лет (некоторые растения). Для некоторых из долгоживущих организмов характерен пострепродуктивный период, когда в старости они теряют способность к размножению. У других он отсутствует или очень слабо выражен.

За один прием размножающаяся особь может производить одного потомка (при делении большинства одноклеточных), или даже менее одного (при размножении пары некоторых высших животных, у которых за один раз появляется один детеныш), или значительное их количество. Рекорд среди животных здесь принадлежит некоторым рыбам, откладывающим при нересте десятки миллионов икринок, а среди растений – размножающимся спорами.

Замечание 1

Продолжительность одного репродуктивного цикла у разных организмов составляет от десятков минут (некоторые прокариоты) до 3-5 лет.

Популяция - это группа особей одного вида (или иные группы, в которых организмы могут обмениваться генетической информацией), занимающая определенное пространство в данное время. Популяция обладает "биологическими особенностями", которые она разделяет со всеми составляющими ее организмами, и "групповыми особенностями", которые служат уникальными характеристиками группы. К "биологическим особенностям" следует отнести наличие жизненного цикла популяции, ее способность к росту, дифференцировке и самоподдержанию. Популяция имеет определенную организацию и структуру, которые можно описать. К "групповым особенностям" относятся такие, как рождаемость, смертность, возрастная структура популяции и генетическая приспособленность; эти признаки относятся только к популяции. Особь рождается и умирает, имеет тот или иной возраст, но применительно к особи нельзя говорить о рождаемости, смертности или возрастной структуре - характеристиках, имеющих смысл только на уровне группы. Следовательно, популяционные признаки можно разделить на две категории:

1) признаки, связанные с количественными соотношениями и структурой: плотность, рождаемость, смертность, распределение организмов по возрастам, биотический потенциал, характер распределения в пределах территории и тип роста. Эти признаки обычно выражаются в виде статистических функций и характеризуют группу как целое;

2) признаки, характеризующие общегенетические особенности популяции, а именно: способностью к адаптации, репродуктивной (дарвиновской) приспособленностью и устойчивостью, т. е. способностью в течение длительного времени производить потомство.

Свойства популяционной группы. Плотность популяции.

Плотность популяции - это ее величина по отношению к единице пространства. Обычно ее определяют и выражают числом особей или биомассой популяции на единицу площади или объема (например, 200 деревьев на 1 га, 5 млн. диатомовых водорослей на 1 м3 воды, 200 кг рыбы на 1 га поверхности водоема). Подобно некоторым другим популяционным признакам, плотность популяции весьма изменчива. Однако эта изменчивость отнюдь не бесконечна; существуют определенные верхние и нижние пределы для размеров популяции, которые соблюдаются в природе или которые теоретически могли бы существовать в течение сколь угодно длительного отрезка времени. Так, на значительной площади леса может жить в среднем 100 птиц на 1 га и 20 000 почвенных членистоногих на 1 м 2 , но никогда не бывает 20000 птиц на 1 м 2 и всего 10 членистоногих на 1 га. Верхний предел плотности определяется потоком энергии в экосистеме (продуктивностью), трофическим уровнем, к которому относится организм, а также величиной и интенсивностью его метаболизма. Нижний предел не может быть так хорошо определен, но по крайней мере в стабильных экосистемах действуют гомеостатические механизмы, поддерживающие плотность обычных или доминирующих организмов в довольно ограниченных пределах.

Динамика популяций. Скорость роста популяций.

Поскольку популяция изменчива, интерес представляет не только ее величина и состав в каждый данный момент, но также и то, как она изменяется. Зная скорость изменения популяции, можно судить о многих ее важных особенностях. Скорость роста популяции - это число организмов, на которое она изменяется за некоторое время; ее получают путем деления величины прироста популяции на протекший промежуток времени. Если через N обозначить. Число организмов, а через t - время, то:

DN - изменение числа организмов;

DN/Dt - средняя скорость изменения числа организмов во времени (т.е. изменение их числа, деленное на время, это и есть скорость. роста); DN/(NDt) - средняя скорость изменения числа организмов во времени на организм (скорость роста, деленная либо на число организмов. имевшихся вначале, либо на среднее число организмов в данный период времени); часто эту величину называют специфической скоростью роста; ее целесообразно использовать в тех случаях, когда сравниваются популяции разных размеров; если умножить ее на 100 , получим скорость роста в процентах.

Мгновенные скорости обозначают как dN/dt.

dN/dt - скорость изменения числа организмов в зависимости от времени в определенный момент (теоретическая мгновенная скорость в определенное время) - наклон кривой роста популяции в любой ее точке;

dN/(Ndt) - скорость изменения числа организмов в зависимости от времени на одну особь в определенный момент.

Предположим, что популяция из 50 представителей простейших в некотором объеме воды увеличивается за счет деления. Примем, что через 1 ч она увеличилась до 150 особей. Тогда N (число особей вначале)= 50;

DN (изменение численности) = 100;

DN/Dt (средняя скорость изменения во времени) = 100 особей в час;

DN/(NDt) (средняя скорость изменения во времени на одну особь)= 2 в час на особь (т. е. увеличение за час на 200%).

Мгновенную скорость dN/dt, а также скорость dN/(Ndt) нельзя рассчитать непосредственно, лишь на основании подсчетов численности; необходимо также знать характер кривой роста популяции.

Рождаемость.

Рождаемость - это способность популяции к увеличению. Она характеризует частоту появления новых особей любого организма независимо от того, "рождаются" ли они, "вылупляются", "отпочковываются", "возникают путем деления" и т. п. Термин экологическая, или реализуемая, рождаемость (или просто "рождаемость" без какого-либо определения) обозначает увеличение популяции при фактических или специфических условиях среды. Эта величина изменяется в зависимости от размера и состава популяции и физических условий среды. Максимальная рождаемость (иногда ее называют абсолютной или физиологической) - образование теоретически максимально возможного количества новых особей в идеальных условиях (когда отсутствуют лимитирующие экологические факторы и размножение ограничивается только физиологическими); для данной популяции это величина постоянная.

Обычно рождаемость выражают в виде скорости, определяемой путем деления числа вновь образовавшихся особей на время (DNn /Dt, абсолютная рождаемость), или же числом новых особей в единицу времени на единицу популяции (), специфическая рождаемость). Рождаемость можно измерить и выразить различными способами. Если через DNn обозначить число особей, вновь образовавшихся в популяции, то:

DNn /Dt =B, или рождаемость;

DNn/(NDt)=b, или рождаемость на единицу популяции.

N может представлять всю популяцию или только ту ее часть, которая способна к размножению. Например, для высших организмов рождаемость обычно принято выражать в расчете на одну самку. В демографии рождаемость обычно выражают числом рождений на 1000 человек за год. Плодовитость определяют как среднее число оплодотворенных яиц, производимых за один цикл размножения или в течение всей жизни. Специфическую рождаемость можно определить как рождаемость, специфичную для разных возрастных групп популяции, или возрастную рождаемость.

Максимальная рождаемость - это теоретически возможный верхний предел, которого популяция или способная к размножению часть популяции могла бы достигнуть при идеальных условиях. Трудности, связанные с определением этого термина очевидны, но он представляет интерес по двум причинам.

1. Максимальная рождаемость служит критерием для сопоставления с реализуемой рождаемостью. Так, утверждение, что рождаемость в популяции мышей составляет 6 детенышей на самку в год, будет иметь больше смысла, если известен предел, до которого она могла бы увеличиться в менее лимитирующих условиях.

2. Являясь постоянной величиной, максимальная рождаемость может быть использована при выведении уравнений для определения и прогнозирования скоростей увеличения популяции.

Поскольку ценность понятия величины максимальной рождаемости состоит в том, что можно сравнивать с ней как с константой различные наблюдаемые величины рождаемости, использовать ее имеет смысл лишь в том случае, если известны условия, при которых она определяется, отсутствует лимитирующее влияние физических факторов, и размеры популяции, которые в свою очередь могут действовать как лимитирующий фактор, оптимальны.

Смертность.

Смертность характеризует гибель особей в популяции. В определенной степени это понятие является антитезой рождаемости. Подобно рождаемости, смертность можно выразить числом особей, погибших за данный период (число смертей за определенный период), или же в виде специфической смертности - по отношению к числу особей, составляющих всю популяцию или ее часть. Экологическая, или реализуемая, смертность - гибель особей в данных условиях среды - величина, которая, подобно экологической рождаемости, не остается постоянной, а изменяется в зависимости от условий среды и состояния самой популяции. Существует некоторая теоретическая минимальная смертность - постоянная величина, характеризующая гибель особей в идеальных условиях, при которых популяция не подвергается лимитирующим воздействиям. Максимальная продолжительность жизни особей в этих оптимальных условиях равна их физиологической продолжительности жизни, которая в среднем обычно намного превышает экологическую продолжительность жизни. Как и в случае рождаемости, нужно знать и минимальную величину смертности (теоретическая константа), и фактическую, или экологическую, смертность (переменная величина); первая служит основой или мерой, которая позволяет производить сравнение. Даже в идеальных условиях в любой популяции происходит гибель особей от "старости", поэтому некоторая минимальная смертность отмечается даже в самых благоприятных условиях, которые можно создать для организма; она будет определяться физиологической продолжительностью жизни особей. Разумеется, поскольку в природе в большинстве популяций средняя продолжительность жизни намного меньше, чем ее потенциальная продолжительность, фактическая величина смертности намного превышает минимальную. Однако в некоторых популяциях или в течение некоторых периодов смертность снижается до величины, которая в практических целях может рассматриваться как минимальная, что дает возможность определять ее в естественных условиях. Смертность, как и рождаемость, особенно у высших организмов, сильно варьирует с возрастом; в связи с этим большой интерес представляет определение специфической смертности для возможно большего числа возрастных групп или стадий развития, поскольку это позволит установить силы, которые лежат в основе механизмов, определяющих общую смертность в популяции.

Нередко значительно больший интерес представляет не смертность, а выживание, поэтому целесообразно выражать смертность в виде величины, обратной выживанию. Если число погибших особей составляет М, то выживание равно 1- М.

Естественные популяции — это не раз и навсегда застывшая совокупность особей, а динамическое единство находящихся во взаимоотношениях организмов. Изменение в численности, структуре и распределении популяций как реакция на условия окружающей среды называется динамикой популяции.

Динамика популяций в упрощенном варианте может быть описана такими показателями, как рождаемость и смертность. Это наиболее важные популяционные характеристики, на основании анализа которых можно судить об устойчивости и перспективном развитии популяции.

Рождаемость определяется как число особей, рожденных в популяции за некоторый промежуток времени (час, день, месяц, год). Термин «рождаемость» относится к особям любых видов, независимо от способов появления их на свет: будь это прорастание семян подорожника или овса, появление детенышей из яиц у курицы или черепахи, рождение потомства у слона, кита либо человека.

Экологи выделяют максимальную рождаемость в условиях отсутствия лимитирующих экологических факторов (добиться этого весьма сложно, даже невозможно). Под максимальной рождаемостью понимается теоретически возможный максимум скорости образования новых особей в идеальных условиях. Размножение организмов сдерживается только их физиологическими особенностями. Теоретическая скорость размножения различных видов может быть довольно высокой. Если взять за основу такой показатель, как время захвата видом всей поверхности Земли, то для бактерии холеры Vibrio cholerae он будет составлять 1,25 суток, для диатомовой водоросли Nitschia putrida — 16,8, для домашней мухи Musca domestica — 366, для курицы — около 6000, для слона — 376 000 суток. Следует подчеркнуть, что максимальная рождаемость — понятие теоретическое. Ни один вид в природе не может бесконтрольно и безгранично размножаться, иначе не избежать экологической катастрофы.

В отличие от максимальной экологическая , или реализованная , рождаемость (или просто рождаемость) характеризует прирост или увеличение численности популяции при фактических или специфических условиях среды.

Смертность — это число особей, погибших в популяции за единицу времени. Подобно рождаемости, смертность можно выразить числом особей, погибших за данный период (число смертей в единицу времени), или в виде удельной смертности для всей популяции (или ее части). При определении смертности популяции учитываются все погибшие особи независимо от причины смерти (умерли ли они от старости или погибли в когтях хищника, отравились ядохимикатами или замерзли и т.д.).

Кривые роста популяций

Любая популяция теоретически способна к неограниченному росту численности, если ее не лимитируют факторы внешней среды. В таком гипотетическом случае скорость роста популяции будет зависеть только от величины биотического потенциала , свойственного виду.

Общие изменения численности популяции складываются за счет четырех явлений: рождаемости, смертности, вселения и выселения особей (иммиграция и эмиграция).

Рождаемость - число новых особей, появляющихся в популяции за единицу времени в расчете на определенное число ее членов.

Различают абсолютную и удельную рождаемость. Первая характеризуется общим числом родившихся особей. Удельную рождаемость вычисляют как среднее изменение численности особей за определенный период времени, деленное на их первоначальное число.

Наиболее часто в природе встречается повышенная смертность особей в ранний период жизни.

Расселение (выселение) особей из популяции или пополнение ее пришельцами — закономерное явление, основанное на одной из важнейших биологических черт вида — его расселительной способности. В каждой популяции часть особей регулярно покидает ее (дисперсия популяции), пополняя соседние или заселяя новые, еще не занятые видом территории.

Современная теория рассматривает темп роста численности популяций как авторегулируемый процесс. Любой популяции организмов в конкретных условиях свойствен определенный средний уровень численности, вокруг которого происходят колебания.

В одном случае темп роста с самого начала высокий и постоянный, не зависящий от нарастающей плотности, что соответствует лавинообразному, по экспоненте, увеличению численности популяции (рис. 6.2а). Его графически описывает простейшая кривая, характеризующая изменение численности популяции, движущейся к равновесию, при условии изобилии пиши. При достижении же определенной плотности рост популяции прекращается. Если лимитирующий фактор среды обитания действует весьма быстро, то рост популяции прекращается внезапно (кривая «Б» на рис. 626).

Однако оказывает ограничивающее влияние не резко, а постепенно, что приводит к 5-образной кривой роста (рис. 6.2#). Такая форма кривой роста наблюдается при внедрении популяции в новую территорию. В этом случае вначале происходит ускоренный рост (по логарифмическому закону). Затем, под влиянием сопротивления среды обитания, рост замедляется, и в популяции наступает фаза равновесия.

Если же популяция испытывает внешние воздействия (например, нападение хищников), то при постоянной удельной скорости изъятия особей в природе устойчиво существуют взаимодействующие популяции хищник — жертва (кривая «Г» на рис. 6.2и), но при меньшем уровне численности: N из меньше N max .

Рис. 6.2. Кривые роста популяции: А — экспоненциальная; 5 — экспоненциальная с прекращением роста; В — логистическая; Г — логистическая с изъятием особей без превышения квоты; Д — с превышением квоты. N — численность популяции (N mах — максимальная); (U из - реальная скорость изъятия, U max — критическая для популяции скорость изъятия продукции; t — время

Удельная скорость изъятия — число изъятых особей в единицу времен, отнесенных к численности популяции. Если же человек изымает биопродукцию из популяции с постоянной (интегральной, но не удельной) скоростью, то возникает понятие квоты.

Следовательно квота представляет собой скорость отлова. Когда квота не превышает установленной критической величины, то равновесие популяции сохраняется. В этом случае отлов можно вести сколь угодно долго без губительных последствий для популяции. S-образная кривая называется логистической кривой роста, поскольку она получена путем интегрирования уравнения, основанного на логически обоснованных допущениях. Если квота превышает критическую величину отлова, то происходит полный отлов популяции за конечное время: популяция не успевает самовосстановиться и гибнет (рис. 6.2г).

Весьма интересны для ученых-экологов циклические популяции, подверженные закономерным колебаниям численности. Однако единой теории удовлетворительно объясняющей закономерности в циклических популяциях пока нет.

У растений, ввиду особенностей их роста, регуляция плотности популяции происходит обычно не только путем изменения численности особей на единице площади, но и путем изменения их вегетативных возможностей.

У животных жесткие формы регуляции плотности популяций проявляются обычно лишь в тех случаях, когда запасы пищи, воды или других ресурсов резко ограничены, а животные либо не способны в данный период к поискам ресурсов на другой территории, либо эти поиски неэффективны.

Среди механизмов, задерживающих рост популяций, у многих видов большую роль играют химические взаимодействия особей.

Другой механизм ограничения численности популяций — такие изменения физиологии и поведения при увеличении плотности, которые, в конечном счете, приводят к проявлению инстинктов массовой миграции.

Наиболее эффективным механизмом сдерживания роста численности популяции на данном ареале является определенная система инстинктов — мечение и охрана участков, не допускающие размножения на них «чужих» особей.

Генетические процессы в популяциях. В настоящее время известно, что все природные популяции гетерогенны и насыщены мутациями. Генетическая гетерогенность любой популяции при отсутствии давления внешних факторов должна быть неизменной, находиться в определенном равновесии.

Положение о генетическом единстве популяции является одним из наиболее важных выводов популяционной генетики: любая популяция представляет сложную генетическую систему, находящуюся в динами ческом равновесии.