Взаимная адаптация в пределах одного вида. Виды адаптации: морфологическая, физиологическая и поведенческая адаптации. Феномены человеческого организма

(Составлен по учебнику биология 10 класс § 19. Данную тему можно провести по биологии 9 класса §53 (Биотические связи в природе), в 6 классе при изучении темы (Природные сообщества. Биогеоценоз) и в 7 классе (Взаимосвязи животных в природе) автор учебников И.Н.Пономарёва. Экология 10-11класс авт. Н.М. Чернова.

Цель урока: Изучить совместную жизнь видов в биоценозе.

Задачи урока:

  • Изучить типы связей у совместно обитающих видов в биогеоценозе;
  • Рассмотреть коадаптацию и другие примеры адаптации, выработавшихся у популяции видов в связи с существованием в сообществе с другими, рядом находящимися видами в процессе эволюции.
  • Работа с терминами.

План урока:


1) Формирование коадаптаций и их примеры.
2. Взаимные адаптации в биогеоценозе.
3. Коэвалюционные связи в биогеоценозе.
4. Типы биоценотических связей.

1. Типы связей и зависимостей в биогеоценозе.

Презентация. (Слайд 5) Все связи и зависимости в биогеоценозе осуществляются в форме взаимодействия его конкретных видов. Эти отношения между видами складывались на протяжении длительного времени исторического развития экосистем. В результате у совместно обитающих видов сформировались взаимно приспособительные свойства (коадаптации). Например , для перекрестного опыления цветков растение стало вырабатывать не нужный для него самого нектар, но именно из-за нектара насекомые (пчёлы, бабочки, шмели) и некоторые животные посещают цветки. Собирая нектар, они переносят при этом пыльцу с одного цветка на другой.

(Слайд 6) Также известны примеры, когда жабы, лягушки и другие амфибии с помощью ядовитой или жгучей слизи, выделяемой кожей, спасают себя от поедания хищниками, поскольку последние хорошо распознают и обходят стороной ядовитых обитателей предостерегающей окраски .

(Слайд 7) У некоторых обитателей биоценоза возник способ защиты, как подражательность окраски и форм тела, или мимикрия . Путём мимикрии неядовитые виды становятся похожими по окраске и форме на ядовитые. Выработавшаяся привычка хищников обходить ядовитые виды оказалось полезной и для мимикрированных особей неядовитых видов.

(Слайд 8) Маскировка – подражательное сходство незащищенных видов у насекомых с предметами окружающей среды и растениями: бабочка со сложенными крыльями, похожими на лист (1); бабочка павлиний глаз (2) и бражник глазастый (3), имеющие на крыльях рисунок, похожий на глаза животных; клоп-колючка, внешне напоминающий по размерам и форме колючку растения (4)

(Слайд 9) Покровительственная окраска или маскировка развита у видов, которые живут открыто и могут оказаться доступными для врагов. Такая окраска делает организмы менее заметными на фоне окружающей местности. Покровительственная форма гусеницы (напоминающая сучок) защищает её от врагов. У открыто гнездящихся птиц (глухарь, тетерев, рябчик и др.) самка, сидящая на гнезде, почти неотличима от окружающего фона. Предупреждающая (угрожающая) окраска. Виды нередко обладают яркой, запоминающейся окраской. Раз попытавшись отведать несъедобную божью коровку, жалящую осу, птица на всю жизнь запомнит их яркую окраску.

Мимикрия. На слайде таракан очень похож на божью коровку, которая несъедобна; справа – муха шмелёвка подражает земляному шмелю.

(Слайд 10) Приспособленность – результат действия факторов эволюций. В результате действия естественного отбора сохраняются особи с полезными для их процветания признаками. Эти признаки обуславливают хорошую, но не абсолютную приспособленность организмов к тем условиям, в которых они живут.

Меняющаяся окраска. Природа наградила некоторых животных способностью изменять окраску при переходе из одной цветовой среды в другую. Такое свойство служит животному надёжной защитой, поскольку делает его малозаметным в любой обстановке. Мгновенно маскируются морские иглы, коньки и морские собачки: в зоне красных водорослей они приобретают красную окраску, среди зеленых водорослей – зелёную. Мгновенно маскируется древесная ящерица хамелеон и каракатица под грунт любого цвета, повторяя самый хитрый рисунок морского дна.

Спасение в полёте. В борьбе за сохранение жизни некоторые животные пользуются приёмами, совершенно не свойственными представителям их класса. Спасаясь от преследования летучие рыбы расправляют в воздухе огромные грудные, а некоторые виды и брюшные плавники и планируют над водой. Клинобрюшка машет грудными плавниками, пролетая до 5 метров. Ящерица летучий дракон имеет ложные рёбра с кожной перепонкой, расправляя их, образует подобие двух широких полукруглых крыльев, и планирует до 30 метров. Древесные змеи сплющивают тело, раздвигая рёбра и впячивая живот. Придав телу плоскую форму в случае опасности, перелетают на другое дерево или планируют на землю.

(Слайд 11) Устрашающая поза. Многие животные, которые не обладают достаточной силой для отпора врагу, пытаются отпугнуть его, принимая различные устрашающие позы. Например, ящерица ушастая круглоголовка расставляет ноги, до предела раскрывает рот и растягивает околоушные складки, которые наливаются кровью, и создаётся впечатление огромной пасти. Ещё более отпугивающего эффекта достигает плащеносная ящерица, которая внезапно как зонт раскрывает ярко расцвеченную кожную перепонку вокруг шеи. Устрашающая поза как способ отпугивания выработалась у некоторых насекомых. Гусеница бабочки большой гарпии резко вскидывает переднюю часть тела и поднимает длинные шевелящиеся “хвосты”. Оригинальным оборонительным приёмом является автотомия – способность мгновенно отбрасывать определённую часть тела в момент нервного раздражения. Например, когда нападающий хватает ящерицу за хвост, она оставляет его врагу, а сама убегает. Самокалечение происходит у некоторых видов насекомых(кузнечики, палочники). Некоторые виды галатурий при опасности выбрасывают на съедение врагу свои внутренности. Отторгнутые органы, конечности, хвосты и щупальца извиваются, привлекая внимание у нападающего (речные раки, крабы), благодаря этому животному удаётся спастись.

(Слайд 12) Переносные укрытия . Для своей безопасности некоторые виды животных сооружают или приспосабливаю различные переносные укрытия. Рак-отшельник имеет мягкое незащищённое твёрдым покровом брюшко, прячут его в пустую раковину брюхоногого моллюска, которую постоянно таскают с собой. Личинки ручейников строят домики из песчинок или из раковин, гусеница бабочки-мешочницы в домике из растительных частиц, крабы дориппе водружают себе на спину створку раковины и бегают с ней по дну, прикрываясь ей как щитом. Надёжные защитники. Иногда для своейбезопасности животные используют защитные качества других животных. Рак-отшельник сажает к себе на раковину актинию, у которой имеются жгучие щупальца. В ядовитых щупальцах актиний прячутся от врагов некоторые рыбы. Надёжной защитой могут служить острые ядовитые иглы морских ежей-диадем для рыб кривохвосток и ежовых уточек.

2. Взаимные адаптации в биогеоценозе.

(Слайд 13) Взаимные адаптации в биогеоценозе. Способы привлечения опылителей и защиты от врагов – это приёмы адаптаций, выработавшихся у популяций видов в связи с существованием в сообществе с другими, рядом находящимися видами. При этом приспособительные свойства появляются не только у растений, но и у животных-опылителей (нектар, строение цветка, ротового аппарата и т.д.).

Сформировавшиеся в условиях биогеоценозов взаимные адаптации обеспечивают большую устойчивость существования взаимодействующих популяций и видов.

(Слайд 14) Распространения плодов и семян с помощью животных. Муравьи распространяют семена растения иван-да-марья. У этого растения белые продолговатые семена по форме напоминают муравьиные коконы, и муравьи тащат их в муравейник, а затем эти же семена, но уже потемневшие и созревшие выбрасывают при уборке как ненужные.

(Слайд 15) Разные виды птиц (сойка, кедровка) и млекопитающих (бурундук, белка) делают запасы семян на зиму. Несъеденные семена весной прорастают.

3. Коэвалюционные связи в биогеоценозе.

(Слайд 16) Коэвалюционные связи в биогеоценозе. Все приспособительные свойства видов, отражающие их биоценотические связи, возникли в сообществе в процессе длительной эволюции и с помощью естественного отбора.

(Слайд17) Только на уровне популяций осуществляется выработка коадаптаций в процессе совместной эволюции видов.

(Слайд 18) Противоположно направленные коадаптации. С помощью естественного отбора совместная эволюция (коэволюция) трофически связанных популяций приводит к выработке противоположно направленных коадаптаций у организмов, предоставляющих пищу, и организмов, потребляющих эту пищу. Коэволюционным путём в биогеоценозах устанавливались трофические, биоценотические связи, экологические ниши, формировались жизненные формы, определённый образ жизни и активность в течение суток или сезона и др

4. Типы биоценотических связей.

(Слайд 19) Типы биотических отношений. В итоге коэволюции одни виды при взаимодействии с другими видами получают пользу, другие – вред. Если обозначить пользу знаком (+), вред – (-), а безразличное влияние – (0). На схеме видим разнообразные биотические связи в биогеоценозе.

(Слайд20) Взаимополезные связи (+ +) (симбиоз). Обязательные (облигатные) мутуалистические отношения называются симбиозом. Например, лишайники представляют собой сожительство водорослей и грибов. Стойкие симбиотические отношения формируются между шляпочными грибами и высшими растениями. Гифы гриба подберёзовика плотно оплетают тонкие корешки берёз. Гриб разлагает и транспортирует в корни берёзы некоторые недоступные для берёзы вещества почвы, усиливая минеральное питание. Гриб способствует лучшему усвоению растением фосфора, азота, воды. Подберёзовик вырабатывает целый ряд витаминов и других активных веществ. Берёза со своей стороны является для гриба единственным источником органических веществ. Деревья не смогли бы развиваться на очень бедных почвах без грибов-партнёров.
На схеме видим разнообразные биотические связи в биогеоценозе.

(Слайд 21) Взаимополезные связи (+ +) (мутуализм). Актиния и рак-отшельник. Актинии кишечнополостные животные ведут сидячий образ жизни, прикрепляясь к грунту, камням, на пустых раковинах моллюсков. Вэтих раковинах находят убежище раки-отшельники. Перемещаясь по дну, рак носит на раковине и актинию. Это даёт ей возможность встретить больше пищи и партнёров для размножения. Для рака такое соседство тоже благоприятно. Стрекательные клетки актинии защищают его от хищников. Часть добычи актиний, парализованная стрекательными клетками, достаётся раку. Симбиоз – это тесное полезное сожительство определённых, конкретных видов. Мутуализм – это любая взаимополезная связь видов.

(Слайд 22) Полезновредные связи (+ -) Между растениями и травоядными животными. Пасущуюся на лугу корову или слона в саванне никто не называет хищником, однако тип их отношений с растениями соответствует взаимодействию “хищник-жертва”. Это взаимодействие называют растительноядностью. Как правило, растительноядные животные не уничтожают растения полностью, а поедают отдельные их части.

(Слайд 23) Полезновредные связи (+ -) Между жертвой и хищником. Каждый организм живёт в окружении других организмов и постоянно вступает в разнообразные отношения между ними. Среди основных типов биотических отношений хищничество – наиболее известный. Взаимодействие типа “хищник-жертва” представляет собой прямую пищевую связь между организмами, результаты которой для одной особи отрицательны, для другой – положительны. Для успешной охоты хищники должны иметь соответствующие качества: хорошее чутьё, зрение. Сова имеет особое оперение, которое делает полёт бесшумным. Хищнику нужны острые когти, зубы или клюв.

(Слайд 24) Полезновредные связи (+ -). Комар. Кровососущий комар не убивает свою жертву, а лишь потребляет часть её крови. Можно ли назвать такой тип взаимоотношений хищничеством? Видимо, да. Отношение комара со своей жертвой во многом сходны с тем, что мы наблюдаем в случае с травоядными животными и растениями. Ведь отношения типа “хищник-жертва” – это прямые пищевые связи между организмами, в которых одна особь получает выгоды, а другая терпит неудобства.

(Слайд 28) Полезнонейтральная связь (+ 0) комменсализм: нахлебничество. Нередко в природе встречаются такие отношения между видами, когда один из них поставляет другому пищу или убежище, а сам не испытывает от этого ни вреда, ни пользы. Такой тип биотических взаимоотношений носит название комменсализм, или нахлебничество. На Крайнем Севере комменсалом белого медведя служат песцы.

(Слайд 29) Полезнонейтральная связь (+ 0) комменсализм: квартирантство. Пищей рыбам-прилипалам служат остатки трапезы хозяина. При этом акулам такая форма взаимоотношения не имеет ни положительного, ни отрицательного значения. Они прикрепляются к телу акул своими присосками и перемещаются с ними по просторам океана.

(Слайд 30) Взаимовредные связи (– -) Межвидовая конкуренция Конкуренция возникает в тех случаях, когда две или более популяции используют один и тот же ресурс, находящийся в недостатке. Например, грифы и шакалы в африканских саваннах могут конкурировать за пищевые остатки от трапезы крупных хищников. В конкурентной борьбе чаще побеждает не сильнейший, а наиболее приспособленный.

(Слайд 31) Взаимовредные связи (– -) Внутривидовая конкуренция Чем более сходны потребности двух особей в том или ином ресурсе, находящемся в недостатке, тем сильнее конкуренция между ними. Поэтому конкуренция между особями одного вида (внутривидовая) будет выражена сильнее, чем между особями разных видов (межвидовая). В некоторые годы антилопы саванн интенсивно размножаются, достигая огромной плотности. Бесчисленные стада этих животных съедают и вытаптывают практически всю траву. Если антилопам не удаётся найти новые пастбища, большая их часть гибнет от голода.

(Слайд 32) Взаимовредные связи (– -) Межвидовая конкуренция. Всякая конкуренция, в том числе и межвидовая, не выгодна организмам. Именно поэтому она является одной из причин дифференциации, или расхождения видов. В ходе длительной эволюции виды “уходят” от конкуренции друг с другом. Формируются экологические ниши.

(Слайд 33) Взаимовредные связи (– -) Антогонизм– отношения, при которых присутствие одного вида исключает пребывание другого вида.

(Слайд 34) Взаимовредные связи (– -) Агрессия– активно выясняющие отношения между видами.

(Слайд 35) Нейтральновредные связи (0 -) Аменсализм.Еловый лес. Все светолюбивые растения, попадая в тень крупных деревьев, испытывают недостаток света.Это приводит к ухудшению их состояния. Для самого дерева подобное соседство обычно бывает безразличным.

(Слайд 36) Нейтрализм (0 0) В экосистемах всегда есть виды, которые обитают на одной территории, но непосредственно друг с другом не связаны.

5. Работа с терминами: коадаптация, мимикрия, покровительственная и предупреждающая окраска, автотомия, симбиоз, мутуализм, компенсализм…. и др

Литература

  1. И.Н.Пономарёва и др. Биология. 10 класс. М. Вентана-Граф. 2008г. (§ 19).
  2. Д.К.Беляев. Общая биология. М. Просвещение. 2004 г.
  3. И.Н.Пономарёва и др.Основы общей биологии. 9 класс. М. Вентана-Граф. 2006г. (§ 53).
  4. В.А.Вронский. Экология. Словарь-справочник. Феникс. 1997 г.
  5. Н.М.Чернова. Основы экологии.10-11класс. Дрофа. 2001 г.
  6. И.А.Жигарёв. Экология. Электронное наглядное пособие серии “Мир биологии”. М. 2008 г.

Число всевозможных экологических факторов потенциально является неограниченным. Несмотря на многообразное влияние экологических факторов на организмы можно выявить общий характер (закономерности) их воздействия.

Диапазон действия или зона толерантности (выносливости) экологического фактора ограничен крайними пороговыми значениями (точки минимума и максимума), при которых возможно существование организма. Чем шире диапазон колебаний экологического фактора, в пределах которого данный вид может существовать, тем шире диапазон его выносливости (толерантности).

В соответствии с пределами выносливости организмов выделяют зону нормальной жизнедеятельности (витуальную), зоны угнетения (сублетальные), за которыми следует нижний и верхний пределы жизнедеятельности. За этими пределами находится летальная зона, где происходит гибель организма. Точка на оси абсцисс, которая соответствует наилучшему показателю жизнедеятельности организма (оптимальная величина фактора) - это точка оптимума.

Условия среды, в которых, какой-либо фактор (или их совокупность) выходят за пределы зоны комфорта и оказывают угнетающее действие, называется экстремальными.

По степени воздействия на организмы факторы неравнозначны. Поэтому при их анализе всегда выделяются наиболее существенные. Факторы, которые ограничивают развитие организмов из-за недостатка или их избытка по сравнению с потребностью (оптимальным содержанием) называются ограничивающими (лимитирующими). По каждому фактору имеется диапазон выносливости, за пределами которого организм не способен существовать. Следовательно, любой фактор может выступать как лимитирующий, если он отсутствует, находится ниже критического уровня или превосходит максимально высокий уровень.

Для существования и выносливости организма решающее значение принадлежит фактору, который для организма имеется в минимальном количестве. Эта идея легла в основу закона минимума, сформулированного немецким химиком Ю. Либихом: «Выносливость организма определяется самым слабым звеном в цепи его экологических потребностей».

Например: На острове Диксон, где нет шмелей, не растут и бобовые растения. Недостаток тепла препятствует распространению некоторых видов плодовых растений на север (персик, грецкий орех).

Из практики известно, что лимитирующим фактором может быть не только недостаток, но и избыток таких, например факторов, как тепло, свет, вода. Следовательно, организмы характеризуются экологическим минимумом и экологическим максимумом. Впервые эту мысль высказал американский ученый В. Шелфорд, которая легла в основу закона толерантности: «Лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет величину выносливости (толерантности) организма к данному фактору». Исходя из этого закона, можно сформулировать ряд положений, а именно:


Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон в отношении другого;

Организмы с широким диапазоном толерантности ко всем факторам обычно наиболее широко распространены;

Если условия по одному экологическому фактору не оптимальны для вида, то может сузиться и диапазон толерантности к другим экологическим факторам;

Период размножения оказывается обычно критическим, в этот период многие факторы среды часто становятся лимитирующими

Каждый фактор имеет определенные пределы положительного влияния на организмы. Как недостаточное, так и избыточное действие фактора, отрицательно сказывается на жизнедеятельности особей. Чем сильнее отклонение от оптимума в ту или иную сторону, тем больше выражено угнетающее воздействие фактора на организм. Эта закономерность называется правило оптимума: «У каждого вида организмов свои оптимальные значения действия факторов среды и свои пределы выносливости, между которыми располагается его экологический оптимум».

Например: Песец в тундре может переносить колебания температуры воздуха около 80°С (от +30 до -50°С), тепловодные рачки не выдерживают даже незначительное колебание температуры. Их температура лежит в диапазоне 23-29°С, что составляет около 6°С.

Факторы окружающей среды действуют не каждый в отдельности, а взаимно. Взаимодействие различных факторов заключается в том, что изменение интенсивности одного из них может сузить предел выносливости к другому фактору или, наоборот, увеличить его.

Например: Оптимальная температура повышает выносливость к недостатку влаги и пищи; жара переносится легче, если воздух не влажный, а сухой; сильный мороз без ветра человеком или животными переносится легче, в ветреную же погоду при сильном морозе очень велика вероятность обморожения и т.д. Но, несмотря на взаимное влияние факторов, все-таки они не могут заменить друг друга, что нашло отражение в законе независимости факторов В.Р. Вильямса: «Условия жизни равнозначны, ни один из факторов жизни не может быть заменен другим». Например, нельзя действие влажности (воды) заменить действием углекислого газа или солнечного света.

3. Основные представления об адаптациях организмов .

Своеобразие условий каждой среды жизни обусловили своеобразие живых организмов. У всех организмов в процессе эволюции выработались специфические, морфологические, физиологические, поведенческие и другие приспособления к обитанию в своей среде жизни и к разнообразным частным условиям.

Приспособление организмов к среде называют адаптацией. Она развивается под воздействием трех основных факторов – изменчивости, наследственности и естественного (искусственного) отбора. На своем историко-эволюционном пути организмы адаптировались к периодическим первичным и вторичным факторам.

Периодические первичные факторы – это те, которые существовали до появления жизни (температура, освещенность, приливы, отливы и др.). К этим факторам адаптация наиболее совершенна. Периодические вторичные факторы – это следствие изменения первичных (влажность воздуха, зависящая от температуры; растительная пища, зависящая от цикличности и развития растений и др.) В нормальных условиях в местообитании должны присутствовать только периодические факторы, а непериодические – отсутствовать.

Непериодические факторы воздействуют катастрофически, вызывая болезни или даже смерть живых организмов. Человек, чтобы уничтожить вредные для него организмы, например, насекомых, вводит непериодические факторы – пестициды.

Основные способы адаптаций:

Активный путь (сопротивление) - усиление сопротивляемости, активизация процессов, позволяющих осуществлять все физиологические функции. Например: поддержание определенной температуры тела теплокровными животными.

Пассивный путь (подчинение) - подчинение жизненных функций организма изменению факторов среды. Он свойственен всем растениям и холоднокровным животным выражается в замедлении роста и развития, что позволяет экономнее расходовать ресурсы.

Среди теплокровных (млекопитающих и птиц) пассивные приспособления в неблагоприятные периоды используют виды, впадающие в оцепенение, спячку, зимний сон.

Избегание неблагоприятных воздействий (избегание) - выработка таких жизненных циклов, при которых наиболее уязвимые стадии развития завершаются в самые благоприятные периоды года.

У животных – формы поведения: перемещения животных в места с более благоприятными температурами (перелеты, миграции); изменение сроков активности (спячка зимой, ночной образ в пустыне); утепление убежищ, гнезд пухом, сухими листьями, углубление нор и т.п.;

У растений – изменение процессов роста; Например, карликовость тундровых растений помогает использовать тепло приземного слоя.

Способность организмов переживать неблагоприятные время (изменение температуры, отсутствие влаги и др.) в состоянии, при котором резко снижается обмен веществ и отсутствует видимые проявления жизни, называют анабиоз, (семена, споры бактерий, беспозвоночные, земноводные и др.)

Диапазон адаптированности вида к разнообразным условиям среды характеризует экологическая валентность (пластичность) (рис. 3).

Экологически непластичные, т.е. маловыносливые виды называются стенобионтными (stenos – узкий) – форель, глубоководные рыбы, белый медведь.

Более выносливые – эврибионтные (eurus – широкий) – волк, бурый медведь, тростник.

Кроме того, хотя в целом виды приспособлены к жизни в определенном диапазоне условий, в пределах ареала вида имеются места с разными экологическими условиями. Популяции подразделяются на экотипы (субпопуляции).

Экотип – совокупность организмов любого вида, обладающие выраженными свойствами адаптации к месту обитания.

Экотипы растений отличается по годовым циклам роста, сроком цветения, внешним и другим признакам.

У животных, например у овец, выделено 4 экотипа:

Английские мясные и мясо-шерстные (северо-западная Европа);

Камвольные и мериносовые (Средиземноморье);

Курдючные и жирнохвостые (степи, пустыни, полупустыни);

Короткохвостые (лесная зона Европы и северных регионов)

Использование экотипов растений и животных может сыграть важную роль в развитии растениеводства и животноводства, особенно при экологическом обосновании районирования сортов и пород в регионах с разнообразными природно-климатическими условиями.

4. Понятие «жизненная форма» и «экологическая ниша»

Организмы и среда, в которой они обитают, находятся в постоянном взаимодействии. В результате возникает поразительное соответствие 2-х систем: организма и среды. Это соответствие носит приспособительный характер. Среди приспособлений живых организмов наибольшую роль играют морфологические адаптации. Изменения в наибольшей степени затрагивают органы, находящиеся в непосредственном соприкосновении с внешней средой. В результате наблюдается конвергенция (сближение) морфологических (внешних) признаков у разных видов. При этом внутренние черты строения организмов, их общий план строения остаются неизменными.

Морфологический (морфо-физиологический) тип приспособления животного или растения к определенным условиям обитания и определенному образу жизни называют жизненной формой организма.

(Конвергенция - возникновение сходных внешних признаков у разных не родст-венных форм в результате сходного образа жизни).

В то же время один и тот же вид в разных условиях может приобрести разные жизненные формы: например лиственница, ель на крайнем севере образуют стелющиеся формы.

Учение о жизненных формах было начато А. Гумбольдтом (1806). Особое направление в учении о жизненных формах принадлежит К. Раункиеру. Наиболее полно основы классификации жизненных форм растительных организмов разработаны в исследованиях И.Г. Серебрякова.

Многообразны жизненные формы у животных организмов. К сожалению, нет единой системы, классифицирующей многообразие жизненных форм животных и нет общего подхода к их определению.

Понятие «жизненная форма» тесно связано с понятием «экологическая ниша». Понятие «экологическая ниша» в экологию было введено И. Гриннелом (1917) для определения роли того или иного вида в сообществе.

Экологическая ниша – это положение вида, которое он занимает в системе сообщества, комплекс его связей и требований к абиотическим факторам среды.

Ю. Одум (1975) образно представил экологическую нишу как занятие «профессию» организма в той системе видов, к которой он принадлежит, а его местообитание – это «адрес» вида. Значение экологической ниши позволяет ответить на вопросы, как, где и чем питается вид, чьей добычей он является, каким образом и где он отдыхает и размножается.

Так, например, зеленое растение, принимая участие в сложении сообщества, обеспечивает существование целому ряду экологических ниш:

1 – корнееды; 2 – поедающие корневые выделения; 3 – листоеды; 4 – стволоеды; 5 – плодоеды; 6 – семяеды; 7 – цветкоеды; 8 – пыльцееды; 9 – сокоеды; 10 – почкоеды.

Вместе с тем, один и тот же вид в разные периоды развития может занимать различные экологические ниши. Например, головастик – питается растительной пищей, взрослая лягушка – типичное плодоядное животное, поэтому им свойственны различные экологические ниши.

Не существует 2-х различных видов, занимающих одинаковые экологические ниши, но есть близкородственные виды, часто настолько сходные, что им требуется одна и та же ниша. В этом случае возникает жесткая межвидовая конкуренция за пространство, пищу, биогенные вещества и т.п. Результатом межвидовой конкуренции может быть либо взаимное приспособление 2-х видов, либо популяция одного вида замещается популяцией другого вида, а первый вынужден переселиться на другое место или перейти на другую пищу. Явление экологического разобщения близкородственных (или сходных по иным признакам) видов получило название принципа конкурентного исключения или принципа Гаузе (в честь русского ученого Гаузе, доказавшего его существование экспериментально в 1934 г.)

Внедрение популяции в новые сообщества возможно только при наличии подходящих условий и возможности занять соответствующую экологическую нишу. Сознательное или невольное внедрение новых популяций в свободную экологическую нишу, без учета всех особенностей существования, нередко приводит к бурному размножению, вытеснению или уничтожению остальных видов и нарушению экологического равновесия. Примером вредных последствий искусственного переселения организмов являются колорадский жук - опаснейший вредитель картофеля. Его родина Северная Америка. В начале 20 в. его завезли с картофелем во Францию. Сейчас он населяет всю Европу. Он очень плодовит, легко перемещается, имеет мало естественных врагов, уничтожая до 40% урожая.

Выявление ограничивающих факторов имеет огромное практическое значение. В первую очередь для выращивания сельскохозяйственных культур: внесение необходимых удобрений, известкование почв, мелиорация и т.д. позволяют повысить урожайность, повысить плодородие почв, улучшить существование культурных растений.

  1. Что означает приставка «эври» и «стено» в названии вида? Приведите примеры эврибионтов и стенобионтов.

Широкий предел толерантности вида по отношению к абиотическим факторам среды обозначают добавлением к названию фактора приставки "эври . Неспособность переносить значительные колебания факторов или низкий предел выносливости характеризуется приставкой "стено ", например, стенотермные животные. Небольшие изменения температуры мало сказываются на эвритермных организмах и могут оказаться гибельными для стенотермных. Вид, адаптированный к низким температурам, является криофильным (от греч. криос– холод), а к высоким температурам – термофильным. Аналогичные закономерности применимы и к другим факторам. Растения могут быть гидрофильными , т.е. требовательными к воде и ксерофильными (суховыносливые).

По отношению к содержанию солей в среде обитания выделяют эвригалов и стеногалов (от греч. галс– соль), к освещенности – эврифотов и стенофотов, по отношению к кислотности среды – эвриионные и стеноионные виды.

Поскольку эврибионтность дает возможность заселения разнообразных мест обитания, а стенобионтность резко суживает круг пригодных для вида мест, эти 2 группы часто называют эври – и стенобионтами . Многие наземные животные, обитающие в условиях континентального климата, способны выдерживать значительные колебания температуры, влажности, солнечной радиации.

К стенобионтам можно отнести - орхидеи, форель, дальневосточный рябчик, глубоководные рыбы).

Животных, стенобионтных одновременно по отношению к нескольким факторам называютстенобионтами в широком смысле слова (рыбы, обитающие в горных реках и ручьях, не переносящие слишком высокой температуры и низкого содержания кислорода, обитатели влажных тропиков, неприспособленные к низкой температуре и малой влажности воздуха).

К эврибионтам относят колорадского жука, мышь, крыс, волков, тараканов, камыш, пырей.

  1. Адаптация живых организмов к экологическим факторам. Виды адаптации.

Адаптация (от лат. адаптацио – приспособление) – это эволюционно возникшее приспособление организмов среды, выражающееся в изменении их внешних и внутренних особенностей.

Особи, почему-либо утратившие способность к адаптированию, в условиях изменений режимов экологических факторов, обречены на элиминацию , т. е. на вымирание .

Виды адаптации: морфологическая, физиологическая и поведенческая адаптации.

Морфология – это учение о внешних формах организмов и их частей.

1.Морфологическая адаптация – это адаптация, проявляющаяся в приспособлении к быстрому плаванию у водных животных, к выживанию в условиях высоких температур и дефицита влаги – у кактусов и иных суккулентов.

2.Физиологические адаптации заключаются в особенностях ферментативного набора в пищеварительном тракте животных, определяемого составом пищи. Например, обитатели сухих пустынь способны обеспечивать потребность во влаге за счет биохимического окисления жиров.

3.Поведенческие (этологические) адаптации проявляются в самых разнообразных формах. Например, существуют формы приспособительного поведения животных, направленные на обеспечение оптимального теплообмена с окружающей средой. Приспособительное поведение может проявляться в создании убежищ, передвижениях в направлении более благоприятных, предпочитаемых температурных условий, выборе мест с оптимальной влажностью или освещенностью. Многим беспозвоночным свойственно избирательное отношение к свету, проявляющееся в приближениях или удалениях от источника (таксисах). Известны суточные и сезонные кочевки млекопитающих и птиц, включая миграции и перелеты, а также межконтинентальные перемещения рыб.

Приспособительное поведение может проявляться у хищников в процессе охоты (выслеживание и преследование добычи) и у их жертв (затаивание, запутывание следа). Исключительно специфично поведение животных в брачный период и во время выкармливания потомства.

Существуютдва типа приспособления к внешним факторам. Пассивный путь адапта- ции – это адаптация по типу толерантности (терпимость, выносливость) заключается в возникновении определенной степени устойчивости к данному фактору, способностисохранять функции при изменении силы его воздействия.. Такой тип приспособления формируется как характерное видовое свойство и реализуется на клеточно-тканевом уровне. Второй тип приспособления – активный . В этом случае организм с помощью специфических адаптивных механизмов компенсирует изменения, вызванные воздействующим фактором, таким образом, что внутренняя среда остается относительно постоянной. Активные приспособления – это адаптация по резистентному типу (сопротивление) поддерживают гомеостаз внутренней среды организма. Пример толерантного типа приспособления – пойкилоосмотические животные, пример резистентного типа – гомойоосмотические.

  1. Дайте определение популяции. Назовите основные групповые характеристики популяции. Приведите примеры популяций. Возрастающая, стабильная и умирающая популяции.

Популяция - группа особей одного вида, находящихся во взаимодействии между собой и совместно населяющих общую территорию. Основные характеристики популяции следующие:

1. Численность - общее количество особей на определенной территории.

2. Плотность популяции - среднее число особей на единицу площади или объема.

3. Рождаемость - число новых особей, появившихся за единицу времени в результате размножения.

4. Смертность - количество погибших особей в популяции за единицу времени.

5. Прирост популяции - разница между рождаемостью и смертностью.

6. Темп роста - средний прирост за единицу времени.

Популяции свойственна определенная организация, распределение особей по территории, соотношение групп по полу, возрасту, поведенческим особенностям. Она формируется, с одной стороны, на основе общих биологических свойств вида, а с другой - под влиянием абиотических факторов среды и популяции других видов.

Структура популяции нестабильна. Рост и развитие организмов, рождение новых, гибель от различных причин, изменение окружающих условий, увеличение или уменьшение численности врагов - все это приводит к изменению различных соотношений внутри популяции.

Возрастающая или растущая популяция – это популяция, в которой преобладают молодые особи, такая популяция растет в числе или внедряется в экосистему (например, страны "третьего" мира); Чаще отмечается превышение рождаемости над смертностью и численность популяции растет вплоть до такой степени, что может наступить вспышка массового размножения. Это особенно характерно для мелких животных.

При сбалансированной интенсивности рождаемости и смертности формируется стабильная популяция. В такой популяции смертность компенсируется приростом и численность ее, а также ареал удерживаются на одном уровне. Стабильная популяция – это популяция, в которой число особей разных возрастов равномерно меняется и носит характер нормального распределения (в качестве примера можно назвать население стран Западной Европы).

Сокращающаяся (умирающая) популяция – это популяция, у которойсмертность превышает рождаемость. Уменьшающаяся,или отмирающая популяция – это популяция, в которой преобладают особи старших возрастов. Примером является Россия 90-х годов XX века.

Однако сокращаться безгранично она также не может . При определенном уровне численности интенсивность смертности начинает падать, а плодовитости повышаться. В конечном итоге сокращающаяся популяция, достигнув какой-то минимальной численности, превращается в свою противоположность – в растущую популяцию. Рождаемость в такой популяции постепенно растет и в определенный момент выравнивается со смертностью, т. е. популяция на короткий промежуток времени становится стабильной. В сокращающихся популяциях преобладают старые особи, уже не способные интенсивно размножаться. Такая возрастная структура свидетельствует о неблагоприятных условиях.

  1. Экологическая ниша организма, понятия и определения. Местообитание. Взаимное расположение экологических ниш. Экологическая ниша человека.

Любой вид животного, растения, микроба способен нормально обитать, питаться, размножаться только в том месте, где его «прописала» эволюция за многие тысячелетия, начиная с его предков. Для обозначения этого феномена биологи заимствовали термин из архитектуры – слово «ниша» и стали говорить, что каждый вид живого организма занимает в природе свою, только ему присущую экологическую нишу.

Экологическая ниша организма – это совокупность всех его требований к условиям среды (составу и режимам экологических факторов) и место, где эти требования удовлетворяются, или вся совокупность множества биологических характеристик и физических параметров среды, определяющих условия существования того или иного вида, преобразование им энергии, обмен информацией со средой и себе подобными.

Понятие экологическая ниша обычно применяется при использовании взаимоотношений экологически близких видов, относящихся к одному трофическому уровню. Термин «экологичекая ниша» предложен Дж. Гриннеллом в 1917 году для характеристики пространственного распределения видов, то есть экологическая ниша определялась как понятие, бликое к местообитанию.Ч. Элтон определил экологическую нишу как положение вида в сообществе, подчеркнув особую важность трофических связей. Нишу можно представить как часть воображаемого многомерного пространства (гиперобъема), отдельные измерения которого соответствуют факторам, необходимым для вида. Чем больше варьирует параметр, т.е. приспособленность вида к определенному экологическому фактору, тем шире его ниша. Ниша может увеличиваться и в случае ослабленной конкуренции.

Место обитания вида – это физическое пространство, занимаемое видом, организмом, сообществом, оно определяется совокупностью условий абиотической и биотической среды, обеспечивающих весь цикл развития особей одного вида.

Место обитания вида можно обозначить как «пространственная ниша».

Функциональное положение в сообществе, в путях переработки вещества и энергии в процессе питания называют трофической нишей .

Образно говоря, если местообитание - это как бы адрес организмов данного вида, то трофическая ниша - это профессия, роль организма в месте его обитания.

Сочетание этих и других параметров принято называть экологической нишей.

Экологическая ниша (от франц. нише – углубление в стене) – это место, занимаемое биологическим видом в биосфере, включает не только его положение в пространстве, но и место в трофических и других взаимодействиях в сообществе, как бы «профессия» вида.

Ниша экологическая фундаментальная (потенциальная) – это экологическая ниша, в которой вид может существовать при отсутствии конкуренции со стороны других видов.

Ниша экологическая реализованная (реальная) – экологическая ниша, часть фундаментальной (потенциальной) ниши, которую вид может отстоять в конкурентной борьбе с другими видами.

По взаимному расположению ниши двух видов подразделяются на три типа:не соприкасающиеся экологические ниши; соприкасающиеся, но не перекрывающиеся ниши; соприкасающиеся и перекрывающиеся ниши.

Человек – один из представителей царства животных, биологический вид класса млекопитающих. Несмотря на то, что ему присущи многие специфические свойства (разум, членораздельная речь, трудовая деятельность, биосоциальность и др.), он не утратил своей биологической сущности и все законы экологии справедливы для него в той же мере, в какой и для других живых организмов. Человек имеет свою, только ему присущую, экологическую нишу. Пространство, в котором локализована ниша человека весьма ограничено. Как биологический вид, человек может обитать только в пределах суши экваториального пояса (тропики, субтропики), где и возникло семейство гоминид.

  1. Сформулируйте фундаментальный закон Гаузе. Что такое «жизненная форма»? Какие экологические (или жизненные) формы выделяют среди обитателей водной среды?

Как в растительном, так и в животном мире весьма широко распространена межвидовая и внутривидовая конкуренция. Между ними существует принципиальное различие.

Правило (или даже закон) Гаузе: два вида не могут одновременно занимать одну и ту же экологическую нишу и поэтому обязательно вытесняют друг друга.

В одном из опытов Гаузе разводил два вида инфузорий – Paramecium caudatum и Paramecium aurelia. В качестве пищи они регулярно получали один из видов бактерий, который в присутствии парамеций не размножается. Если каждый вид инфузорий культивировался порознь, то их популяции росли согласно типичной сигмовидной кривой (а). При этом численность парамеций определялась количеством пищи. Но при совместном существовании парамеции начинали конкурировать и P. aurelia целикам вытесняла своего конкурента (б).

Рис. Конкуренция между двумя близкими видами инфузорий, занимающими общую экологическую нишу. а – Paramecium caudatum; б – P. aurelia. 1. – в одной культуре; 2. – в смешанной культуре

При совместном выращивании инфузорий через некоторое время остался только один вид. При этом инфузории не нападали на особей другого типа и не выделяли вредных веществ. Объяснение заключается в том, что изученные виды отличались неодинаковой скоростью роста. В конкуренции за пищу побеждал быстрее размножающийся вид.

При разведении P. caudatum и P. bursaria подобного вытеснения не происходило, оба вида находились в равновесии, причем последний сосредоточивался на дне и стенках сосуда, а первый – в свободном пространстве, т. е. в другой экологической нише. Опыты с другими видами инфузорий продемонстрировали закономерность взаимоотношения жертвы и хищника.

Принципа Гаузё носит название – принципа соревнования-исключения . Этот принцип приводит либо к экологическому разделению близких видов, либо к уменьшению их плотности там, где они в состоянии сосуществовать. В результате конкуренции происходит вытеснение одного из видов. Принцип Гаузе играет огромную роль в развитии концепции ниши, а также заставляет экологов искать ответы на ряд вопросов: Каким образом сосуществуют сходные виды?Сколь велики должны быть различия между видами, чтобы они могли сосуществовать? Как удается избежать конкурентного исключения?

Жизненная форма вида – это исторически сложившийся комплекс его биологических, физиологических и морфологических свойств, обусловливающий определенную реакцию на воздействие окружающей среды.

Среди обитателей водной среды (гидробионтов) классификация выделяет следующие жизненные формы.

1.Нейстон (от греч. нейстон – способный плавать) совокупность морских и пресноводных организмов, которые обитают у поверхности воды, например личинки комаров, многие простейшие, клопы-водомерки, а из растений – хорошо известная ряска.

2.Ближе к поверхности воды обитает планктон.

Планктон (от греч. планктос – парящий) – плавающие организмы, способные совершать вертикальные и горизонтальные перемещения преимущественно в соответствии с движением водных масс. Выделяют фитопланктон - фотосинтезирующие свободно плавающие водоросли и зоопланктон - мелкие ракообразные, личинки моллюски и рыбы, медузы, мелкие рыбы.

3.Нектон (от греч. нектос – плавающий) – свободно плавающие организмы, способные к самостоятельному вертикальному и горизонтальному перемещению. Нектон обитает в толще воды – это рыбы, в морях и океанах, амфибии, крупные водные насекомые, ракообразные, также пресмыкающиеся (морские змеи и черепахи) и млекопитающие: китообразные (дельфины и киты) и ластоногие (тюлени).

4. Перифитон (от греч. пери – вокруг, около, фитон - растение) – животные и растения, прикрепленные к стеблям высших растений и поднимающиеся над дном (моллюски, коловратки, мшанки, гидры и др.).

5. Бентос (от греч. бентос – глубина, дно) – донные организмы, ведущие прикрепленный или свободный образ жизни, в том числе: обитающие в толще донного осадка. Это преимущественно моллюски, некоторые низшие растения, ползающие личинки насекомых, черви. В придонном слое обитают организмы, питающиеся в основном разлагающимися остатками.

  1. Что такое биоценоз, биогеоценоз, агроценоз? Структура биогеоценоза. Кто является основателем учения о биоценозе? Примеры биогеоценозов.

Биоценоз (от греч. koinos – общий bios -жизнь) – это сообщество взаимодействующих живых организмов, состоящее из растений (фитоценоз), животных (зооценоз), микроорганизмов (микробоценоз), приспособленных к совместному обитанию на данной территории.

Понятие «биоценоз» – условное, поскольку вне среды существования организмы жить не могут, но ним удобно пользоваться в процессе изучения экологических связей между организмами.В зависимости от местности, отношение к человеческой деятельности, степени насыщения, полноценности и т.п. различают биоценозы суши, воды, естественные и антропогенные, насыщенные и ненасыщенные, полночленные и неполночленные.

Биоценозы, как и популяции - это надорганизменный уровень организации жизни, но более высокого ранга.

Размеры биоценотических группировок различны - это и большие сообщества подушек лишайников на стволах деревьев или гниющий пень, но это и население степей, лесов, пустынь и т.д.

Сообщество организмов называют биоценозом, а науку, изучающую сообщество организмов- биоценологией .

В.Н. Сукачевым для обозначения сообществ был предложен (и общепринят) термин биогеоценоз (от греч. биос– жизнь, гео– Земля, ценоз– сообщество)- это совокупность организмов и природных явлений, характерных для данной географической местности..

Структура биогеоценоза включает две компоненты биотическую – сообщество живых растительных и животных организмов (биоценоз)– и абиотическую - совокупность неживых факторов среды (экотоп, или биотоп).

Пространство с более или менее однородными условиями, которое занимает биоценоз, носит название биотопа (topis – место) или экотопа.

Экотоп включает две главные составляющие: климатоп - климат во всех его многообразных проявления и эдафотоп (от греч. эдафос – почва) - почво-грунты, рельеф, воды.

Биогеоценоз = биоценоз (фитоценоз+зооценоз+микробоценоз)+биотоп (климатоп+ эдафотоп).

Биогеоценозы – это природные образования (в них присутствует элемент «гео» – Земля) .

Примерами биогеоценозов могут быть пруд, луг, смешанный или однопородный лес. На уровне биогеоценоза происходят все процессы трансформации энергии и вещества в биосфере.

Агроценоз (от лат. аграрис и греч койкос - общий) – созданное человеком и им же искусственно поддерживаемое сообщество организмов с повышенной урожайностью (продуктивностью) одного или нескольких избранных видов растений или животных.

Агроценоз отличается от биогеоценоза основными компонентами. Он не может существовать без поддержки человека, так как это искусственно созданное биотическое сообщество.

  1. Понятие «экосистема». Три принципа функционирования экосистем.

Экологическая система - одно из важнейших понятий экологии, сокращенно – экосистема.

Экосистема (от греч. ойкос – жилище и система) – это любое сообщество живых существ вместе со средой их обитания, связанное внутри сложной системой взаимоотношений.

Экосистема - это надорганизменные объединения, включающие организмы и неживое (косное) окружение, находящиеся во взаимодействии, без чего невозможно поддержание жизни на нашей планете. Это сообщество растительных и животных организмов и неорганической среды.

Исходя из взаимодействия живых оpганизмов, обpазующих экосистему, между собой и сpедой их обитания, в любой экосистеме выделяют взаимообусловленные совокупности биотических (живые организмы) и абиотических (косная или неживая природа) компонентов, а также факторы среды (такие как солнечная pадиация, влажность и темпеpатуpа, атмосферное давление), антропогенные факторы и другие.

К абиотическим компонентам экосистем относятся неорганические вещества - углерод, азот, вода, атмосферная углекислота, минералы, органические вещества, находящиеся преимущественно в почве: белки, углеводы, жиры, гуминовые вещества и др., попавшие в почву после отмирания организмов.

К биотическим компонентам экосистемы относятся продуценты, автотрофы (растения, хемосинтетики), консументы (животные) и детритофаги, редуценты (животные, бактерии, грибы).

  • Казанская физиологическая школа. Ф.В. Овсянников, Н.О. Ковалевский, Н.А. Миславский, А.В. Кибяков

  • Грандиозные изобретения человеческого разума не перестают удивлять, фантазии нет предела. Но то, что много веков создавала природа, превосходит самые креативные идеи и замыслы. Природа создала более чем полтора миллиона видов живых особей, каждая из которых индивидуальна и неповторима в своих формах, физиологии, приспособленности к жизни. Примеры адаптации организмов к постоянно меняющимся условиям проживания на планете - это примеры мудрости создателя и постоянный источник задач для разгадывания биологам.

    Адаптация означает приспособленность или привыкание. Это процесс постепенного перерождения физиологических, морфологических или психологических функций существа в условиях изменившейся среды обитания. Изменениям подвергаются как отдельные особи, так и целые популяции.

    Яркий пример адаптации непосредственной и косвенной - выживание растительного и животного мира в зоне повышенной радиации вокруг Чернобыльской АЭС. Непосредственная приспособляемость свойственна тем особям, которые сумели выжить, привыкнуть и начать размножаться, некоторые не выдержали испытания и погибли (косвенная адаптация).

    Так как условия существования на Земле меняются постоянно, процессы эволюции и приспособленности в живой природе также являются процессом непрерывным.

    Свежий пример адаптации - изменение среды обитания колонии зеленых мексиканских попугаев аратингов. С недавних пор они изменили привычное место обитания и поселились в самом жерле вулкана Масая, в среде, постоянно пропитанной серным газом высокой концентрации. Ученые еще не дали объяснение этому феномену.

    Виды адаптации

    Изменение всей формы существования организма представляет собой функциональную адаптацию. Пример адаптации, когда изменение условий приводит к обоюдному приспосабливанию живых организмов друг к другу, представляет собой коррелятивное приспособление или коадаптацию.

    Приспособление может быть пассивным, когда функции или строение субъекта происходят без его участия, или активным, когда он сознательно изменяет свои привычки под стать окружающей среде (примеры адаптации людей к природным условиям или социуму). Бывают случаи, когда субъект приспосабливает окружающую среду под свои потребности - это объективная адаптация.

    Биологи разделяют виды адаптации по трем признакам:

    • Морфологические.
    • Физиологические.
    • Поведенческие или психологические.

    Примеры адаптации животных или растения в чистом виде редки, большинство случаев привыкания к новым условиям происходит в смешанных видах.

    Морфологические адаптации: примеры

    Морфологические изменения - это произошедшие в процессе эволюции изменения формы тела, отдельных органов или всего строения живого организма.

    Ниже приведены морфологические адаптации, примеры из животного и растительного мира, которые мы рассматриваем как само собой разумеющееся явление:

    • Перерождение листьев в колючки у кактусов и других растений засушливых регионов.
    • Панцирь черепахи.
    • Обтекаемые формы тела жителей водоемов.

    Физиологические адаптации: примеры

    Приспособление физиологическое - это изменение ряда химических процессов, происходящих внутри организма.

    • Выделение цветами сильного запаха для привлечения насекомых способствует запылению.
    • Состояние анабиоза, в которое способны входить простейшие организмы, позволяет им сохранять жизнедеятельность через многие годы. Старейшая способная к размножению бактерия имеет возраст 250 лет.
    • Накопление подкожного жира, который преобразуется в воду, у верблюдов.

    Поведенческие (психологические) адаптации

    С психологическим фактором больше связаны примеры адаптации человека. Поведенческие характеристики свойственны флоре и фауне. Так, в процессе эволюции изменение температурного режима заставляет некоторых животных впадать в спячку, птиц - улетать на юг, чтобы возвратиться весной, деревья - сбрасывать листву и замедлять движение соков. Инстинкт выбора наиболее подходящего партнера для продолжения рода движет поведением животных в брачный период. Некоторые северные лягушки и черепахи полностью замерзают на зиму и оттаивают, оживают с наступлением тепла.

    Факторы, вызывающие потребность в переменах

    Любые процессы адаптации - это ответная реакция на факторы экологии, которые ведут к изменению окружающей среды. Такие факторы подразделяются на биотические, абиотические и антропогенные.

    Биотические факторы - это влияние живых организмов друг на друга, когда, к примеру, исчезает один вид, который служит пищей другому.

    Абиотические факторы - это изменения в окружающей неживой природе, когда меняется климат, состав почвы, обеспеченность водой, циклы солнечной активности. Физиологические адаптации, примеры влияния абиотических факторов - экваториальные рыбы, которые могут дышать и в воде, и на суше. Они хорошо приспособились к условиям, когда пересыхание рек - частое явление.

    Антропогенные факторы - влияние человеческой деятельности, которое изменяет окружающую среду.

    Приспособления к среде обитания

    • Освещенность . У растений - это отдельные группы, которые отличаются потребностью в солнечном освещении. На открытых пространствах хорошо живут светолюбивые гелиофиты. В противоположность им - сциофиты: растения лесных чащ, хорошо себя чувствуют в затененных местах. Среди животных также есть особи, чья рассчитана на активный образ жизни в ночное время или под землей.
    • Температура воздуха. В среднем для всего живого, в том числе и человека, оптимальной температурной средой считается диапазон от 0 до 50 о С. Однако жизнь есть практически во всех климатических регионах Земли.

    Противоположные примеры адаптации к аномальным температурам описаны ниже.

    Арктические рыбы не замерзают благодаря выработке в крови уникального антифризного белка, который не дает крови заледенеть.

    Простейшие микроорганизмы обнаружены в гидротермальных источниках, температура воды в которых превышает градус кипения.

    Растения-гидрофиты, то есть те, что живут в воде или около нее, погибают даже при незначительной потере влаги. Ксерофиты, наоборот, приспособлены жить в засушливых регионах, и погибают при большой влажности. Среди животных природа также поработала над адаптацией к водному и безводному окружению.

    Адаптация человека

    Способности человека к приспособлению поистине грандиозны. Секреты человеческого мышления раскрыты далеко не полностью, и тайны адаптивной способности людей еще долго будут загадочной темой для ученых. Превосходство Гомо сапиенса перед другими живыми существами - в способности сознательно менять свое поведение под требование окружающей среды или, наоборот, окружающий мир под свои потребности.

    Гибкость поведения человека проявляется ежедневно. Если дать задание: «приведите примеры адаптации людей», большинство начинает вспоминать исключительные случаи выживания в Это редкие случаи, а в новых для себя обстоятельствах свойственна человеку ежедневно. Мы примеряем на себя новую обстановку в момент рождения на свет, в детском саду, школе, в коллективе, при переезде в другую страну. Именно это состояние принятия новых ощущений организмом называют стрессом. Стресс является психологическим фактором, но тем не менее под его воздействием меняются многие физиологические функции. В случае, когда человек принимает новую среду как положительную для себя, новое состояние становится привычным, а иначе стресс грозит стать затяжным и привести к ряду серьезных заболеваний.

    Механизмы приспособления человека

    Существуют три типа адаптации человека:

    • Физиологическая . Самые простые примеры - акклиматизации и приспособленность к смене часовых поясов или суточного режима работы. В процессе эволюции сформировались различные типы людей, в зависимости от территориального места проживания. Арктический, высокогорный, континентальный, пустынный, экваториальный типы значительно разнятся физиологическими показателями.
    • Психологическая адаптация. Это способность человека находить моменты понимания с людьми разных психотипов, в стране с иным уровнем менталитета. Человеку разумному свойственно менять свои устоявшиеся стереотипы под влиянием новой информации, особых случаев, стресса.
    • Социальная адаптация. Тип привыкания, который свойственен только человеку.

    Все адаптивные типы тесно связаны между собой, как привило, любая смена привычного существования вызывает в человеке потребность в социальной и психологической адаптации. Под их воздействием приходят в действие механизмы физиологических изменений, которые тоже подстраиваются под новые условия.

    Такая мобилизация всех реакция организма названа адаптационным синдромом. Новые реакции организма появляются в ответ на резкие изменения обстановки. На первой стадии - тревоги - наблюдается изменение физиологических функций, изменения в работе обмена веществ и систем. Далее подключаются защитные функции и органы (в том числе мозг), начинают включать свои защитные функции и скрытые возможности. Третья стадия адаптации зависит от индивидуальных особенностей: человек или включается в новую жизнь и входит в обычное русло (в медицине в этот период наступает выздоровление), или же организм не принимает стресса, и последствия принимают уже негативную форму.

    Феномены человеческого организма

    В человеке заложен природой огромный запас прочности, который используется в повседневной жизни только в незначительном объеме. Проявляется он в экстремальных ситуациях и воспринимается как чудо. На самом же деле чудо заложено в нас самих. Пример адаптации: способность людей адаптироваться к нормальной жизни после удаления значительной части внутренних органов.

    Природный врожденный иммунитет на протяжении жизни может укрепляться рядом факторов или же, наоборот, ослабевать при неправильном образе жизни. К сожалению, увлечение вредными привычками - это тоже отличие человека от других живых организмов.

    Среда обитания – это та часть природы, которая окружает живой организм и с которой он непосредственно взаимодействует. Составные части и свойства среды многообразны и изменчивы. Любое живое существо живет в сложном, меняющемся мире, постоянно приспосабливаясь к нему и регулируя свою жизнедеятельность в соответствии с его изменениями.

    Отдельные свойства или элементы среды, воздействующие на организмы, называются экологическими факторами. Факторы среды многообразны. Они могут быть необходимы или, наоборот, вредны для живых существ, способствовать или препятствовать выживанию и размножению. Экологические факторы имеют разную природу и специфику действия. Среди них выделяют абиотические и биотические, антропогенные.

    Абиотические факторы – температура, свет, радиоактивное излучение, давление, влажность воздуха, солевой состав воды, ветер, течения, рельеф местности – это все свойства неживой природы, которые прямо или косвенно влияют на живые организмы.

    Биотические факторы – это формы воздействия живых существ друг на друга. Каждый организм постоянно испытывает на себе прямое или косвенное влияние других существ, вступает в связь с представителями своего вида и других видов – растениями, животными, микроорганизмами, зависит от них и сам оказывает на них воздействие. Окружающий органический мир – составная часть среды каждого живого существа.

    Взаимные связи организмов – основа существования биоценозов и популяций; рассмотрение их относится к области син-экологии.

    Антропогенные факторы – это формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни. В ходе истории человечества развитие сначала охоты, а затем сельского хозяйства, промышленности, транспорта сильно изменило природу нашей планеты. Значение антропогенных воздействий на весь живой мир Земли продолжает стремительно возрастать.

    Хотя человек влияет на живую природу через изменение абиотических факторов и биотических связей видов, деятельность людей на планете следует выделять в особую силу, не укладывающуюся в рамки этой классификации. В настоящее время практически судьба живого покрова Земли, всех видов организмов находится в руках человеческого общества, зависит от антропогенного влияния на природу.

    Один и тот же фактор среды имеет различное значение в жизни совместно обитающих организмов разных видов. Например, сильный ветер зимой неблагоприятен для крупных, обитающих открыто животных, но не действует на более мелких, которые укрываются в норах или под снегом. Солевой состав почвы важен для питания растений, но безразличен для большинства наземных животных и т. п.

    Изменения факторов среды во времени могут быть: 1) регулярно-периодическими, меняющими силу воздействия в связи со временем суток, или сезоном года, или ритмом приливов и отливов в океане; 2) нерегулярными, без четкой периодичности, например, изменения погодных условий в разные годы, явления катастрофического характера – бури, ливни, обвалы и т. п.; 3) направленными на протяжении известных, иногда длительных, отрезков времени, например, при похолодании или потеплении климата, зарастании водоемов, постоянном выпасе скота на одном и том же участке и т. п.

    Среди факторов среды выделяют ресурсы и условия. Ресурсы окружающей среды организмы используют, потребляют, тем самым уменьшая их количество. К ресурсам относят пищу, воду при ее дефиците, убежища, удобные места для размножения и т. п. Условия – это такие факторы, к которым организмы вынуждены приспосабливаться, но повлиять на них обычно не могут. Один и тот же фактор среды может быть ресурсом для одних и условием для других видов. Например, свет – жизненно необходимый энергетический ресурс для растений, а для обладающих зрением животных – условие зрительной ориентации. Вода для многих организмов может быть и условием жизни, и ресурсом.

    2.2. Адаптации организмов

    Приспособления организмов к среде носят название адаптации. Под адаптациями понимаются любые изменения в структуре и функциях организмов, повышающие их шансы на выживание.

    Способность к адаптациям – одно из основных свойств жизни вообще, так как обеспечивает и саму возможность ее существования, возможность организмов выживать и размножаться. Адаптации проявляются на разных уровнях: от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экологических систем. Адаптации возникают и развиваются в ходе эволюции видов.

    Основные механизмы адаптации на уровне организма: 1) биохимические – проявляются во внутриклеточных процессах, как, например, смена работы ферментов или изменение их количества; 2) физиологические – например, усиление потоотделения при повышении температуры у ряда видов; 3) морфо-анатомические – особенности строения и формы тела, связанные с образом жизни; 4) поведенческие – например, поиск животными благоприятных мест обитания, создание нор, гнезд и т. п.; 5) онтогенетические – ускорение или замедление индивидуального развития, способствующие выживанию при изменении условий.

    Экологические факторы среды оказывают на живые организмы различные воздействия, т. е. могут влиять как раздражители, вызывающие приспособительные изменения физиологических и биохимических функций; как ограничители, обусловливающие невозможность существования в данных условиях; как модификаторы, вызывающие морфологические и анатомические изменения организмов; как сигналы, свидетельствующие об изменениях других факторов среды.

    2.3. Общие законы действия факторов среды на организмы

    Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.

    1. Закон оптимума.

    Каждый фактор имеет определенные пределы положительного влияния на организмы (рис. 1). Результат действия переменного фактора зависит прежде всего от силы его проявления. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто оптимумом для организмов данного вида. Чем сильнее отклонения от оптимума, тем больше выражено угнетающее действие данного фактора на организмы (зона пессимума). Максимально и минимально переносимые значения фактора – это критические точки, за пределами которых существование уже невозможно, наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью живых существ по отношению к конкретному фактору среды.


    Рис. 1. Схема действия факторов среды на живые организмы


    Представители разных видов сильно отличаются друг от друга как по положению оптимума, так и по экологической валентности. Так, например, песцы в тундре могут переносить колебания температуры воздуха в диапазоне более 80 °C (от +30 до -55 °C), тогда как тепловодные рачки Copilia mirabilis выдерживают изменения температуры воды в интервале не более 6 °C (от +23 до +29 °C). Одна и та же сила проявления фактора может быть оптимальной для одного вида, пессимальной – для другого и выходить за пределы выносливости для третьего (рис. 2).

    Широкую экологическую валентность вида по отношению к абиотическим факторам среды обозначают добавлением к названию фактора приставки «эври». Эвритермные виды – выносящие значительные колебания температуры, эврибатные – широкий диапазон давления, эвригалинные – разную степень засоления среды.




    Рис. 2. Положение кривых оптимума на температурной шкале для разных видов:

    1, 2 - стенотермные виды, криофилы;

    3–7 – эвритермные виды;

    8, 9 - стенотермные виды, термофилы


    Неспособность переносить значительные колебания фактора, или узкая экологическая валентность, характеризуется приставкой «стено» – стенотермные, стенобатные, стеногалинные виды и т. д. В более широком смысле слова виды, для существования которых необходимы строго определенные экологические условия, называют стенобионтными, а те, которые способны приспосабливаться к разной экологической обстановке, – эврибионтными.

    Условия, приближающиеся по одному или сразу нескольким факторам к критическим точкам, называют экстремальными.

    Положение оптимума и критических точек на градиенте фактора может быть в определенных пределах сдвинуто действием условий среды. Это регулярно происходит у многих видов при смене сезонов года. Зимой, например, воробьи выдерживают сильные морозы, а летом гибнут от охлаждения при температуре чуть ниже нуля. Явление сдвига оптимума по отношению к какому-либо фактору носит название акклимации. В отношении температуры это хорошо известный процесс тепловой закалки организма. Для температурной акклимации необходим значительный период времени. Механизмом является смена в клетках ферментов, катализирующих одни и те же реакции, но при разных температурах (так называемые изоферменты). Каждый фермент кодируется своим геном, следовательно, необходимо выключение одних генов и активация других, транскрипция, трансляция, сборка достаточного количества нового белка и т. п. Общий процесс занимает в среднем около двух недель и стимулируется переменами в окружающей среде. Акклимация, или закалка, – важная адаптация организмов, происходит при постепенно надвигающихся неблагоприятных условиях или при попадании на территории с иным климатом. Она является в этих случаях составной частью общего процесса акклиматизации.

    2. Неоднозначность действия фактора на разные функции.

    Каждый фактор неодинаково влияет на разные функции организма (рис. 3). Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от +40 до +45 °C у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале.



    Рис. 3. Схема зависимости фотосинтеза и дыхания растения от температуры (по В. Лархеру, 1978): t мин, t опт, t макс – температурный минимум, оптимум и максимум для прироста растений (заштрихованная область)


    Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т. п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут также менять места обитания для успешного осуществления всех своих жизненных функций.

    3. Разнообразие индивидуальных реакций на факторы среды. Степень выносливости, критические точки, оптимальная и пессимальные зоны отдельных индивидуумов не совпадают. Эта изменчивость определяется как наследственными качествами особей, так и половыми, возрастными и физиологическими различиями. Например, у бабочки мельничной огневки – одного из вредителей муки и зерновых продуктов – критическая минимальная температура для гусениц -7 °C, для взрослых форм -22 °C, а для яиц -27 °C. Мороз в -10 °C губит гусениц, но не опасен для имаго и яиц этого вредителя. Следовательно, экологическая валентность вида всегда шире экологической валентности каждой отдельной особи.

    4. Относительная независимость приспособления организмов к разным факторам. Степень выносливости к какому-нибудь фактору не означает соответствующей экологической валентности вида по отношению к остальным факторам. Например, виды, переносящие широкие изменения температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима. Эвритермные виды могут быть стеногалинными, стенобатными или наоборот. Экологические валентности вида по отношению к разным факторам могут быть очень разнообразными. Это создает чрезвычайное многообразие адаптации в природе. Набор экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида.

    5. Несовпадение экологических спектров отдельных видов. Каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам адаптации к среде видов существуют различия в отношении к каким-либо отдельным факторам.



    Рис. 4. Изменение участия в луговых травостоях отдельных видов растений в зависимости от увлажнения (по Л. Г. Раменскому и др., 1956): 1 – клевер луговой; 2 – тысячелистник обыкновенный; 3 – келерия Делявина; 4 – мятлик луговой; 5 – типчак; 6 – подмаренник настоящий; 7 – осока ранняя; 8 – таволга обыкновенная; 9 – герань холмовая; 10 – короставник полевой; 11 – козлобородник коротконосиковый


    Правило экологической индивидуальности видов сформулировал русский ботаник Л. Г. Раменский (1924) применительно к растениям (рис. 4), затем оно широко было подтверждено и зоологическими исследованиями.

    6. Взаимодействие факторов. Оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы (рис. 5). Эта закономерность получила название взаимодействия факторов. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие. Наоборот, один и тот же экологический результат может быть получен разными путями. Например, увядание растений можно приостановить путем как увеличения количества влаги в почве, так и снижения температуры воздуха, уменьшающего испарение. Создается эффект частичного взаимозамещения факторов.


    Рис. 5. Смертность яиц соснового шелкопряда Dendrolimus pini при разных сочетаниях температуры и влажности


    Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Полное отсутствие воды или хотя бы одного из основных элементов минерального питания делает жизнь растения невозможной, несмотря на самые благоприятные сочетания других условий. Крайний дефицит тепла в полярных пустынях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью.

    Учитывая в сельскохозяйственной практике закономерности взаимодействия экологических факторов, можно умело поддерживать оптимальные условия жизнедеятельности культурных растений и домашних животных.

    7. Правило ограничивающих факторов. Возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Если хотя бы один из экологических факторов приближается или выходит за пределы критических величин, то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Любые сильно уклоняющиеся от оптимума факторы приобретают первостепенное значение в жизни вида или отдельных его представителей в конкретные отрезки времени.

    Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной (рис. 6). Так, продвижение вида на север может лимитироваться недостатком тепла, в аридные районы – недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для растений. Так, опыление инжира всецело зависит от единственного вида насекомых – осы Blastophaga psenes. Родина этого дерева – Средиземноморье. Завезенный в Калифорнию инжир не плодоносил до тех пор, пока туда не завезли ос-опылителей. Распространение бобовых в Арктике ограничивается распределением опыляющих их шмелей. На острове Диксон, где нет шмелей, не встречаются и бобовые, хотя по температурным условиям существование там этих растений еще допустимо.



    Рис. 6. Глубокий снежный покров – лимитирующий фактор в распространении оленей (по Г. А. Новикову, 1981)


    Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно в первую очередь выяснить, не выходят ли какие-либо факторы среды за пределы его экологической валентности, особенно в наиболее уязвимый период развития.

    Выявление ограничивающих факторов очень важно в практике сельского хозяйства, так как, направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность растений или производительность животных. Так, на сильно кислых почвах урожай пшеницы можно несколько увеличить, применяя разные агрономические воздействия, но наилучший эффект будет получен только в результате известкования, которое снимет ограничивающие действия кислотности. Знание ограничивающих факторов, таким образом, ключ к управлению жизнедеятельностью организмов. В разные периоды жизни особей в качестве ограничивающих выступают различные факторы среды, поэтому требуется умелое и постоянное регулирование условий жизни выращиваемых растений и животных.

    2.4. Принципы экологической классификации организмов

    В экологии разнообразие и разноплановость способов и путей адаптации к среде создают необходимость множественных классификаций. Используя какой-либо единственный критерий, нельзя отразить все стороны приспособленности организмов к среде. Экологические классификации отражают сходство, возникающее у представителей самых разных групп, если они используют сходные пути адаптации. Например, если мы классифицируем животных по способам движения, то в экологическую группу видов, передвигающихся в воде реактивным путем, попадут такие разные по систематическому положению животные, как медузы, головоногие моллюски, некоторые инфузории и жгутиковые, личинки ряда стрекоз и др. (рис. 7). В основу экологических классификаций могут быть положены самые разнообразные критерии: способы питания, передвижения, отношение к температуре, влажности, солености среды, давлению и т. п. Разделение всех организмов на эврибионтных и стенобионтных по широте диапазона приспособлений к среде представляет пример простейшей экологической классификации.



    Рис. 7. Представители экологической группы организмов, передвигающихся в воде реактивным способом (по С. A. Зернову, 1949):

    1 – жгутиковое Medusochloris phiale;

    2 – инфузория Craspedotella pileosus;

    3 – медуза Cytaeis vulgaris;

    4 – пелагическая голотурия Pelagothuria;

    5 – личинка стрекозы-коромысла;

    6 – плывущий осьминог Octopus vulgaris:

    а – направление струи воды;

    б – направление движения животного


    Другой пример – разделение организмов на группы по характеру питания. Автотрофы – это организмы, использующие в качестве источника для построения своего тела неорганические соединения. Гетеротрофы – все живые существа, нуждающиеся в пище органического происхождения. В свою очередь, автотрофы делятся на фототрофов и хемотрофов. Первые для синтеза органических молекул используют энергию солнечного света, вторые – энергию химических связей. Гетеротрофов делят на сапрофитов, использующих растворы простых органических соединений, и голозоев. Голозои обладают сложным комплексом пищеварительных ферментов и могут употреблять в пищу сложные органические соединения, разлагая их на более простые составные компоненты. Голозои делятся на сапрофагов (питаются мертвыми растительными остатками), фитофагов (потребителей живых растений), зоофагов (нуждающихся в живой пище) и некрофагов (трупоядных животных). В свою очередь, каждую из этих групп можно подразделить на более мелкие, имеющие свою специфику в характере питания.

    Иначе можно построить классификацию по способу добывания пищи. Среди животных выявляются, например, такие группы, как филътраторы (мелкие рачки, беззубка, кит и др.), пасущиеся формы (копытные, жуки-листоеды), собиратели (дятлы, кроты, землеройки, куриные), охотники на движущуюся добычу (волки, львы, мухи-ктыри и т. п.) и целый ряд других групп. Так, несмотря на большое несходство в организации, одинаковый способ овладения добычей приводит у львов и мух-ктырей к ряду аналогий в их охотничьих повадках и общих чертах строения: поджарости тела, сильному развитию мускулатуры, способности развивать кратковременно большую скорость и т. п.

    Экологические классификации помогают выявлять возможные в природе пути приспособления организмов к среде.

    2.5. Активная и скрытая жизнь

    Обмен веществ – одно из главнейших свойств жизни, определяющее тесную вещественно-энергетическую связь организмов со средой. Метаболизм проявляет сильную зависимость от условий существования. В природе мы наблюдаем два основных состояния жизни: активную жизнедеятельность и покой. При активной жизнедеятельности организмы питаются, растут, передвигаются, развиваются, размножаются, характеризуясь при этом интенсивным метаболизмом. Покой может быть разным по глубине и продолжительности, многие функции организма при этом ослабевают или не выполняются совсем, так как уровень обмена веществ падает под влиянием внешних и внутренних факторов.

    В состоянии глубокого покоя, т. е. пониженного вещественно-энергетического обмена, организмы становятся менее зависимыми от среды, приобретают высокую степень устойчивости и способны переносить условия, которые не могли бы выдержать при активной жизнедеятельности. Эти два состояния чередуются в жизни многих видов, являясь адаптацией к местообитаниям с нестабильным климатом, резкими сезонными изменениями, что характерно для большей части планеты.

    При глубоком подавлении обмена веществ организмы могут вообще не проявлять видимых признаков жизни. Вопрос о том, возможна ли полная остановка обмена веществ с последующим возвращением к активной жизнедеятельности, т. е. своего рода «воскрешение из мертвых», дискутировался в науке более двух столетий.

    Впервые явление мнимой смерти было обнаружено в 1702 г. Антони ван Левенгуком – открывателем микроскопического мира живых существ. Наблюдаемые им «анималькули» (коловратки) при высыхании капли воды сморщивались, выглядели мертвыми и могли пребывать в таком состоянии длительное время (рис. 8). Помещенные вновь в воду, они набухали и переходили к активной жизни. Левенгук объяснил это явление тем, что оболочка «анималькулей», очевидно, «не позволяет ни малейшего испарения» и они остаются живыми в сухих условиях. Однако через несколько десятилетий естествоиспытатели уже спорили о возможности того, что «жизнь может быть полностью прекращена» и восстановлена вновь «через 20, 40, 100 лет или более».

    В 70-х годах XVIII в. явление «воскрешения» после высыхания было обнаружено и подтверждено многочисленными опытами у ряда других мелких организмов – пшеничных угриц, свободноживущих нематод и тихоходок. Ж. Бюффон, повторив опыты Дж. Нидгема с угрицами, утверждал, что «эти организмы можно заставить сколько угодно раз подряд умирать и вновь оживать». Л. Спалланцани впервые обратил внимание на глубокий покой семян и спор растений, расценив его как сохранение их во времени.


    Рис. 8. Коловратка Philidina roseola на разных стадиях высыхания (по П. Ю. Шмидту, 1948):

    1 – активная; 2 – начинающая сокращаться; 3 – полностью сократившаяся перед высыханием; 4 – в состоянии анабиоза


    В середине XIX в. было убедительно установлено, что устойчивость сухих коловраток, тихоходок и нематод к высоким и низким температурам, недостатку или отсутствию кислорода возрастает пропорционально степени их обезвоживания. Однако оставался открытым вопрос, происходит ли при этом полное прерывание жизни или лишь ее глубокое угнетение. В 1878 г. Клод Бернал выдвинул понятие «скрытая жизнь», которую он характеризовал прекращением обмена веществ и «перерывом отношений между существом и средой».

    Окончательно этот вопрос был решен лишь в первой трети XX столетия с развитием техники глубокого вакуумного обезвоживания. Опыты Г. Рама, П. Беккереля и других ученых показали возможность полной обратимой остановки жизни. В сухом состоянии, когда в клетках оставалось не более 2 % воды в химически связанном виде, такие организмы, как коловратки, тихоходки, мелкие нематоды, семена и споры растений, споры бактерий и грибов выдерживали пребывание в жидком кислороде (-218,4 °C), жидком водороде (-259,4 °C), жидком гелии (-269,0 °C), т. е. температуры, близкие к абсолютному нулю. При этом содержимое клеток затвердевает, отсутствует даже тепловое движение молекул, и всякий обмен веществ, естественно, прекращен. После помещения в нормальные условия эти организмы продолжают развитие. У некоторых видов остановка обмена веществ при сверхнизких температурах возможна и без высушивания, при условии замерзания воды не в кристаллическом, а в аморфном состоянии.

    Полная временная остановка жизни получила название анабиоза. Термин был предложен В. Прейером еще в 1891 г. В состоянии анабиоза организмы становятся устойчивыми к самым разнообразным воздействиям. Например, тихоходки выдерживали в эксперименте ионизирующее облучение до 570 тыс. рентген в течение 24 ч. Обезвоженные личинки одного из африканских комаров-хирономусов – Polypodium vanderplanki – сохраняют способность оживать после воздействия температуры в +102 °C.

    Состояние анабиоза намного расширяет границы сохранения жизни, в том числе и во времени. Например, в толще ледника Антарктиды при глубоком бурении были обнаружены микроорганизмы (споры бактерий, грибов и дрожжей), развившиеся впоследствии на обычных питательных средах. Возраст соответствующих горизонтов льда достигает 10–13 тыс. лет. Споры некоторых жизнеспособных бактерий выделены и из более глубоких слоев возрастом в сотни тысяч лет.

    Анабиоз, однако, – достаточно редкое явление. Он возможен далеко не для всех видов и является крайним состоянием покоя в живой природе. Его необходимое условие – сохранение неповрежденными тонких внутриклеточных структур (органелл и мембран) при высушивании или глубоком охлаждении организмов. Это условие невыполнимо для большинства видов, имеющих сложную организацию клеток, тканей и органов.

    Способность к анабиозу обнаруживается у видов, имеющих простое или упрощенное строение и обитающих в условиях резкого колебания влажности (пересыхающие мелкие водоемы, верхние слои почвы, подушки мхов и лишайников и т. п.).

    Гораздо шире распространены в природе другие формы покоя, связанные с состоянием пониженной жизнедеятельности в результате частичного угнетения метаболизма. Любая степень снижения уровня обмена веществ повышает устойчивость организмов и позволяет более экономно тратить энергию.

    Формы покоя в состоянии пониженной жизнедеятельности делят на гипобиоз и криптобиоз, или покой вынужденный и покой физиологический. При гипобиозе торможение активности, или оцепенение, возникает под прямым давлением неблагоприятных условий и прекращается почти сразу после того, как эти условия возвращаются к норме (рис. 9). Подобное подавление процессов жизнедеятельности может возникать при недостатке тепла, воды, кислорода, при повышении осмотического давления и т. п. В соответствии с ведущим внешним фактором вынужденного покоя различают криобиоз (при низких температурах), ангидробиоз (при недостатке воды), аноксибиоз (в анаэробных условиях), гиперосмобиоз (при высоком содержании солей в воде) и др.

    He только в арктических и антарктических, но и в средних широтах некоторые морозостойкие виды членистоногих (коллемболы, ряд мух, жужелицы и др.) зимуют в состоянии оцепенения, быстро оттаивая и переходя к активности под лучами солнца, а затем вновь теряют подвижность при снижении температуры. Взошедшие весной растения прекращают и возобновляют рост и развитие вслед за похолоданием и потеплением. После выпавшего дождя голый грунт часто зеленеет за счет быстрого размножения почвенных водорослей, находившихся в вынужденном покое.


    Рис. 9. Пагон – кусок льда со вмерзшими в него пресноводными обитателями (из С. А. Зернова, 1949)


    Глубина и продолжительность подавления обмена веществ при гипобиозе зависит от длительности и интенсивности действия угнетающего фактора. Вынужденный покой наступает на любой стадии онтогенеза. Выгоды гипобиоза – быстрое восстановление активной жизнедеятельности. Однако это относительно неустойчивое состояние организмов и при большой длительности может быть повреждающим из-за разбалансированности метаболических процессов, истощения энергетических ресурсов, накопления недоокисленных продуктов обмена и других неблагоприятных физиологических изменений.

    Криптобиоз – принципиально другой тип покоя. Он связан с комплексом эндогенных физиологических перестроек, которые происходят заблаговременно, до наступления неблагоприятных сезонных изменений, и организмы оказываются к ним готовы. Криптобиоз является адаптацией прежде всего к сезонной или иной периодичности абиотических факторов внешней среды, их регулярной цикличности. Он составляет часть жизненного цикла организмов, возникает не на любой, а на определенной стадии индивидуального развития, приуроченной к переживанию критических периодов года.

    Переход в состояние физиологического покоя требует времени. Ему предшествует накопление резервных веществ, частичная дегидратация тканей и органов, уменьшение интенсивности окислительных процессов и ряд других изменений, понижающих в целом тканевый метаболизм. В состоянии криптобиоза организмы становятся во много раз более устойчивыми к неблагоприятным воздействиям внешней среды (рис. 10). Основные биохимические перестройки при этом являются во многом общими для растений, животных и микроорганизмов (например, переключение метаболизма в разной степени на путь гликолиза за счет резервных углеводов и т. п.). Выход из криптобиоза также требует времени и затрат энергии и не может быть осуществлен простым прекращением отрицательного действия фактора. Для этого необходимы особые условия, различные для разных видов (например, промораживание, присутствие капельно-жидкой воды, определенная продолжительность светового дня, определенное качество света, обязательные колебания температуры и др.).

    Криптобиоз как стратегия выживания в периодически неблагоприятных для активной жизни условиях – это продукт длительной эволюции и естественного отбора. Он широко распространен в живой природе. Состояние криптобиоза характерно, например, для семян растений, цист и спор различных микроорганизмов, грибов, водорослей. Диапауза членистоногих, спячка млекопитающих, глубокий покой растений – также различные типы криптобиоза.


    Рис. 10. Дождевой червь в состоянии диапаузы (по В. Тишлеру, 1971)


    Состояния гипобиоза, криптобиоза и анабиоза обеспечивают выживание видов в природных условиях разных широт, часто экстремальных, позволяют сохранять организмы в течение длительных неблагоприятных периодов, расселяться в пространстве и во многом раздвигают границы возможности и распространения жизни в целом.