На какие основные группы подразделяются источники света. Источники света: виды, основные характеристики и области применения. Компактные люминесцентные лампы

Фотосъемка. Универсальный самоучитель Кораблев Дмитрий

ИСКУССТВЕННЫЕ ИСТОЧНИКИ СВЕТА

ИСКУССТВЕННЫЕ ИСТОЧНИКИ СВЕТА

К искусственным источникам света, которые активно применяются в фотографии, относятся: электрические лампы накаливания (нормальные осветительные лампы и предназначенные для съемок фотолампы), люминесцентные лампы (используются редко), вспышки.

Действие электрических ламп накаливания основано на том, что вольфрамовая нить, помещенная в безвоздушную или наполненную инертным газом стеклянную колбу, под действием электрического тока раскаляется и излучает свет.

Светоотдача повышается с увеличением мощности ламп. Но и здесь есть небольшие нюансы. Например, 100 ламп по 10 ватт потребляют такую же мощность, как одна лампа в 1000 ватт, но так как их светоотдача мала, они дадут световой поток почти втрое меньший, чем одна лампа в 1000 ватт. Хотя для нужд фотосъемки, о чем будет рассказано далее, первый вариант предпочтительнее.

Также надо не забывать, что по мере эксплуатации лампы ее светоотдача постепенно уменьшается, иногда на четверть от первоначальной величины. Колебания напряжения электрической сети влияет на спектральный состав светового потока. Например, повышение нормального напряжений сети на 10 процентов увеличивает светоотдачу лампы почти в полтора раза, при этом цветовая температура излучения возрастает. Падение напряжения на 16 процентов вдвое уменьшает светоотдачу, а цветовая температура падает.

Люминесцентные лампы как фотографические источники света используются мало, так как очень сложно подобрать для них сбалансированную по цветовой температуре пленку или светофильтр.

Про вспышки уже говорилось, что их свет можно отнести к естественному освещению, но закон обратных квадратов и зависимость освещенности от мощности действует и для них.

Из книги Макияж [Краткая энциклопедия] автора Колпакова Анастасия Витальевна

Искусственные ресницы Современные технологии позволяют сделать взгляд неотразимым. Этого можно достичь наращиванием ресниц. Искусственные ресницы стали актуальными в последнее время, несмотря на то, что процедура довольно дорогая и трудоемкая.Существует несколько

Из книги Большая энциклопедия техники автора Коллектив авторов

Источники света Источники света – это какие-либо объекты, которые излучают электромагнитную энергию в видимой части спектра.История создания источников светаК первому искусственному источнику света можно отнести огонь, добытый и сохраненный первобытным человеком.

Из книги Тайны драгоценных камней автора Старцев Руслан Владимирович

Искусственные рубины Уже было сказано о том, что давно люди пытались получать драгоценные камни сами. Но только с получением обширных знаний по физике и химии это в конце концов оказалось возможно.Еще в 1837 году некий Марк Годен - французский химик - поставил и успешно

Из книги Большая Советская Энциклопедия (ГА) автора БСЭ

Из книги Большая Советская Энциклопедия (ВО) автора БСЭ

Из книги Большая Советская Энциклопедия (ИМ) автора БСЭ

БСЭ

Из книги Большая Советская Энциклопедия (ИС) автора БСЭ

Из книги Большая Советская Энциклопедия (ИС) автора БСЭ

Из книги Катастрофы тела [Влияние звезд, деформация черепа, великаны, карлики, толстяки, волосатики, уродцы...] автора Кудряшов Виктор Евгеньевич

Искусственные карлики Первые попытки искусственного создания карликов имели место на закате Римской Империи. Когда они оказались удачными, тут же возник целый промысел, специализирующийся на производстве и продаже искусственных карликов. Среди римского плебса агенты

Из книги Большая Советская Энциклопедия (ЗУ) автора БСЭ

Из книги Фотосъемка. Универсальный самоучитель автора Кораблев Дмитрий

«ЕСТЕСТВЕННЫЕ» ИСТОЧНИКИ ИСКУССТВЕННОГО СВЕТА К «естественным» искусственным источникам света относятся любые бытовые и промышленные источники света: обычное электрическое освещение помещений, свет керосиновой лампы, автомобильных фар, огонь костра, спички, свечи,

Из книги Энциклопедический словарь крылатых слов и выражений автора Серов Вадим Васильевич

Света, больше света! см. Больше света!

Из книги Промальп в ответах на вопросы автора Гофштейн Александр Ильич

3.9. Искусственные точки закрепления веревок (искусственные точки опоры - ИТО) Если нет возможности надежно закрепить несущую и (или) страховочную веревку (точки закрепления отсутствуют вовсе или их надежность сомнительна), а использование локальных петель по каким-либо

Из книги Цифровая фотография без Photoshop автора Газаров Артур Юрьевич

Из книги Ягодники. Руководство по разведению крыжовника и смородины автора Рытов Михаил В.

9.4.1. Искусственные формы крыжовника Формы, в которых искусственно выращивается крыжовник, могут быть подразделены на три разряда кронистые с низким, средним и высоким штамбом, почему они называются также штамбовыми, шпалерные или стенковые и шнуровые. Кроме этих

Для искусственного освещения применяются различные источники света. По роду питающей их энергии различают электрические и неэлектрические источники света, по способу получения излучения — температурные и люминесцентные. Электрические источники света завоевали всеобщее признание. Преимущества электрических источников света перед неэлектрическими заключаются прежде всего в том, что они гораздо гигиеничнее последних, имеют несравненно большую световую отдачу (силу света и яркость), а также надежны в эксплуатации и обеспечивают возможность устройства гигиенически рационального освещения.

Электрические источники света по виду излучения подразделяются на три группы: а) лампы накаливания; б) газоразрядные лампы; в) смешанные источники света, совмещающие различные виды излучения (так, например, лампа солнечного света и др.).

В современных, наиболее совершенных лампах накаливания для повышения их экономичности применяется биспиральная нить накаливания, а колбы наполняют смесью малотеплопроводных газов — криптоном и ксеноном. С целью уменьшения яркости нити накаливания и приближения спектра излучения к дневному в первом случае изготовляют лампы с колбами либо из матового и молочного стекла, либо с колбами из светло-голубого стекла. Такие лампы имеют ряд гигиенических преимуществ по сравнению с лампами, имеющими колбы из прозрачного бесцветного стекла.

В газоразрядных лампах используют излучение газов или паров металла, возникающее под действием проходящего через них электрического тока. Для общего освещения линейный спектр большинства газоразрядных ламп является недостатком, так как при таком освещении происходит искажение цвета предметов. Применение люминофоров в сочетании с газовым разрядом позволило создать источники света, дающие излучение с почти непрерывным спектром любого состава, обладающие при этом высокой световой отдачей. Особенно широкое распространение получили осветительные люминесцентные лампы, дающие свет, близкий к белому, или дневному.

Люминесцентные лампы представляют собой цилиндрические стеклянные трубки, вн утренняя поверхность которых покрыта тонким равномерным слоем люминофора. В оба конца трубки впаяны электроды. В лампу вводят капельку ртути и инертный газ при давлении в несколько миллиметров ртутного столба.

Таким образом, современные люминесцентные лампы представляют собой газоразрядные ртутные лампы низкого давления, в которых ультрафиолетовое излучение, возникающее при прохождении электрического тока через пары ртути, превращается при помощи светосоставов (люминофоров), нанесенных на внутреннюю поверхность колбы, в видимое излучение. Применяя различные люминофоры или их смеси, получают лампы с излучением любого спектрального состава.

В настоящее время выпускают четыре основных типа ламп, отличающихся по цвету излучения:

  1. лампы дневного света (ДС);
  2. лампы холодно-белого света (ХБС);
  3. лампы белого света (БС);
  4. лампы тепло-белого света (ТБС).

На рис. 124 даны спектральные характеристики этих типов ламп.

Рис. 124. Спектральные характеристики люминесцентных ламп типа ДС, ХБС, БС, ТБС.

В люминесцентных лампах в среднем 20% потребляемой энергии превращается в видимое излучение. Это в 2-2,5 раза больше, чем в лампах накаливания. Световая отдача люминесцентных ламп дневного света составляет от 33 до 42,5 лм/вт, а люминесцентных ламп белого света она еще выше — до 52,5 лм/вт, т. е. в 3-3,5 раза выше, чем в лампах накаливания. Характерным для всех упомянутых выше ламп является недостаточное излучение в красной части спектра.

Яркость трубки люминесцентных ламп, дающих свет, близкий к белому или дневному, составляет от 3000 до 9000 нт. Особенностью люминесцентных ламп является возможность получения спектра излучения, близкого к спектру дневного света. Это новое качество важно в гигиеническом отношении. Не меньшее гигиеническое значение имеет еще и то, что яркость трубки в люминесцентных лампах во много раз меньше, чем яркость нити накала электрических ламп накаливания. Кроме того, при освещении люминесцентными лампами получается почти полное отсутствие теней и бликов на освещаемой поверхности, т. е. те качественные преимущества, которые нельзя достичь без применения специальных арматур от ламп накаливания.

Люминесцентные лампы не лишены недостатков. Существенный недостаток люминесцентных ламп, питаемых переменным током, состоит в периодичности колебаний светового потока до 100 раз в секунду.

Смешанные источники излучения совмещают оба вида излучения.

К ним относятся дуговые лампы, лампы солнечного света и др. Все эти источники также содержат ультрафиолетовые лучи. Большого внимания с гигиенической точки зрения заслуживает лампа искусственного солнечного света.

В настоящее время нашей промышленностью разработаны источники света, дающие одновременно видимое и эритемное излучение и не требующие для своего включения пусковых приспособлений — ртутно-вольфрамовые лампы (РВЭ-350).

Светильники

Светильники — приборы, которые состоят из источника света и осветительной арматуры. Для освещения должны применяться светильники, а не источники света — лампы.

В осветительных установках создание заданной величины освещенности и требуемого распределения яркости в поле зрения невозможно без осветительной арматуры, главной задачей которой является перераспределение светового потока и ослабление блеского действия источника света. Она бывает отражающей, преломляющей и рассеивающей. По принятой в СССР светотехнической классификации светильники общего освещения делились на три класса: П — прямого света, О — отраженного света и Р — рассеянного света.

Схематически действие светильников различных классов, применяемых для общего освещения, показано на рис. 125.

Рис. 125. Особенности распределения светового потока при употреблении светильников различных классов.

При освещении помещения светильниками прямого света потолок и верхняя часть стен остаются затененными или в крайнем случае слабо освещенными. Особенностью применения светильников прямого света являются жесткие тени.

Светильники прямого света применяются для освещения высоких цехов, подсобных помещений и санитарных узлов. Освещение светильниками прямого света наименее благоприятно в отношении гигиены зрения. Оно создает большую неравномерность освещения и резкие тени.

Светильники рассеянного света характеризуются тем, что световой поток ими распределяется в верхнюю и нижнюю полусферы так, что в одну из них излучается более 10%, а в другую — менее 90%. Тени в этом случае становятся более мягкими. Такие светильники могут быть рекомендованы для освещения общественных зданий.

Светильники отраженного света характеризуются тем, что весь световой поток направляется ими кверху. Освещение отраженным светом рекомендуется для парадных комнат, конференц-залов, актовых залов и т. п. Отраженное освещение, создавая равномерность освещения, отсутствие теней и слепящих бликов, наиболее благоприятно для зрения.

В светильниках с люминесцентными лампами применяются в качестве затенителя решетки, создающие необходимый защитный угол в плоскости оси лампы. Защитным углом светильника называется угол, образуемый горизонталью, проходящей через тело накала лампы, и линией, соединяющей наиболее удаленную точку тела накала с противолежащей по отношению к ней точкой края отражателя (рис. 126).

Рис. 126. Иллюстрация защитного угла светильника.

Санитарно-гигиеническую оценку светильников производят, исходя из того, насколько они:

  1. обеспечивают требуемую освещенность и равномерность ее на освещаемой поверхности;
  2. защищают глаза от блескости;
  3. дают нужное перераспределение светового потока;
  4. обеспечивают возможность в нужных случаях изменить спектр источника света.

Защита глаз от блескости (ограничение ослепленности) достигается созданием достаточного защитного угла светильника, увеличением высоты подвеса светильника, применением для экранирования источника света рассвивающих свет материалов, а также применением ламп с колбами из матового стекла. Блескость светильника определяется его силой света и яркостью.

Требования, предъявляемые к качественным и количественным характеристикам искусственного освещения, определяются многими условиями; они различны в зависимости от назначения помещений, характера зрительной работы и возраста обитателей этих помещений. Искусственное освещение закрытых помещений осуществляется либо системой одного общего освещения, либо системой комбинированного освещения, общим и местным одновременно.

При высоте комнат 2,7-3 м наивыгоднейшая высота подвеса светильников близка к строительной высоте. Такая же высота подвеса светильников, а именно 2,8 м от пола, регламентируется правилами ограничения ослепленности.

Задача выбора рационального варианта размещения светильников сводится к определению расстояния между светильниками, при котором обеспечивается наибольшая равномерность освещения.;

В настоящее время промышленностью выпускаются специальные типы светильников для промышленных и общественных зданий (лечебных учреждений, школ и т. п.).

Лечебные учреждения

Для лечебных учреждений (больницы, поликлиники и т. п.) рекомендуются в основном светильники двух типов.

1. В палатах больниц для общего освещения желательно применение светильников полностью отраженного света, устанавливаемых в центральной части потолка, и светильников местного освещения, устанавливаемых у изголовья кроватей больных.

Рекомендуемый тип светильников общего освещения — ПФ-ОО. Светильник рассчитан для работы с двумя лампами накаливания 60 вт каждая и имеет рассеиватель из молочного накладного стекла. Отражатель светильника снаружи и изнутри окрашен белой эмалевой краской. Светильники ПФ-00 выпускаются Рижским светотехническим заводом (рис. 127).

Рис. 127. Светильник ПФ-ОО.

2. В кабинетах врачей и других помещениях поликлиник и больниц (лаборатории, помещения для приготовления лекарств, процедурные кабинеты и т. п.) целесообразно применять кольцевые светильники типа СК-300, КСО-1, ПМ-1, С-178 и потолочные кольцевые светильники.

Рис. 128. а — кольцевой светильник типа СК-300; б — кольцевой светильник типа КСО-1.

СК-300 (рис. 128, а) — подвесной кольцевой светильник, преимущественно отраженного светораспределения. Светильник рассчитан для работы с лампой накаливания 300 вт и имеет пять металлических экранирующих колец; нижнее кольцо перекрыто силикатным молочным стеклом, окрашен белой эмалевой краской. Светильник выпускается заводом «Электросвет» имени П. Н. Яблочкова (Москва).

КСО-1 (рис. 128, б) — подвесной кольцевой светильник отраженного света. Светильник рассчитан для работы с лампой накаливания 300 вт и имеет два экранирующих кольца и чашу, закрывающую снизу лампу. Экранирующие кольца и чаша покрыты белой силикатной эмалью. Светильник выпускается Луганским заводом электромонтажных изделий № 6.

Рис. 129. а — подвесной кольцевой светильник рассеянного света типа ПМ-1; б — потолочный кольцевой светильник рассеянного света С-178.

ПМ-1 (рис. 129, а) — подвесной кольцевой светильник рассеянного света. Светильник рассчитан для работы с лампой накаливания 300 вт и имеет четыре экранирующих кольца, скрепленных четырьмя кронштейнами, окрашен белой эмалевой краской. Выпускается Рижским светотехническим заводом.

С-178 (рис. 129, а) — потолочный кольцевой светильник рассеянного света. Светильник рассчитан для работы с лампами накаливания 75 и 100 вт и имеет три экранирующих кольца, скрепленных между собой; окрашен белой эмалевой краской. Светильник выпускается Казанским заводом электромонтажных изделий.

Рис. 130. Потолочный кольцевой светильник.

Потолочный кольцевой светильник (рис. 130) рассчитан для работы с лампой накаливания 150 вт и имеет отражатель и экранирующую решетку из пяти концентрических колец, скрепленных между собой тремя ребрами, которая крепится к отражателю на трех крючках. Внутренняя поверхность отражателя и экранирующая решетка окрашены белой эмалевой краской. Светильник выпускается 5-м Механическим заводом (Москва).

Школьные здания

Для освещения школьных классов лампами накаливания рекомендуются кольцевые светильники типа СК-300 и КСО-1. Из светильников с люминесцентными лампами для освещения школьных классов применяются светильники серии ШОД. Это — подвесные светильники рассеянного света, рассчитанные на две люминесцентные лампы по 40 или 80 вт каждая. Светильник имеет экранирующую решетку, состоящую из одной продольной и ряда поперечных планок. Сбоку вдоль светильника в пазах решетки установлены плоские рассеиватели из опалового стекла. Корпус светильника и экранирующая решетка окрашены белой диффузной краской. Светильники выпускаются Рижским светотехническим заводом, а также начато их производство на заводах Пермского и Мордовского совнархозов (рис. 131).

Рис. 131. Светильник с люминесцентными лампами для освещения школьных классов.

Промышленные предприятия

1. Для помещений с нормальными пыльностью и влажностью применяются светильники типа «Универсаль», рассчитанные для работы с лампами накаливания 150, 200 и 500 вт. Светильники выпускаются заводами Тульского совнархоза, Луганским заводом электромонтажных изделий и артелью «Электротехник» (Ленинград).

Светильники типа «Глубокоизлучатель» рассчитаны для работы с лампами накаливания 1000 и 500 вт. Эти светильники выпускаются Луганским заводом электромонтажных изделий.

В настоящее время все чаще начинают применяться для освещения производственных помещений светильники с люминесцентными лампами.

Рис. 132. Светильник с люминесцентными лампами для промышленных предприятий.

Для помещений с нормальными пыльностью и влажностью рекомендуются светильники серии ОД и ОДЛ; светильники серии ОД (рис. 132) в двух вариантах: со сплошным отражателем (шифр ОД) и с отражателем, в верхней части которого сделаны отверстия (шифр ОДО). Последний 15% светового потока направляет вверх. Светильники выпускаются на две и четыре люминесцентные лампы, 30 или 40 вт каждая. Светильники выпускаются заводами Латвийского, Татарского и Пермского совнархозов (с лампами по 30 вт) и заводами Латвийского, Ростовского и Кемеровского совнархозов (с лампами по 40 вт).

Светильники серии ОДЛ выпускаются заводом ламп дневного света Управления металлообрабатывающей промышленности (Москва). Светильники выпускаются на две или три люминесцентные лампы, 15 и 30 вт каждая. Светильники обеих серий, ОД и ОДЛ, выпускаются как с экранирующей решеткой, так и без нее.

2. Для производственных помещений с повышенными влажностью, содержанием пыли и химически активной средой рекомендуются светильники в пылезащитном исполнении и уплотненные светильники. Это — светильники типа «Универсалы» в пылезащитном исполнении и светильники типа СХ — изделия завода «Электросвет» имени П. Н. Яблочкова (Москва).

Из светильников с люминесцентными лампами рекомендуются светильники серии ТН (в частности, для освещения производственных помещений типографии). Светильники выпускаются на две и три люминесцентные лампы, 30 и 40 вт каждая. Светильники выпускаются Ленинградским литейно-механическим заводом, Металлообрабатывающим заводом Владимирского совнархоза (ст. Денисово) и Механическим заводом в Костроме.

Источники света - один из самых массовых товаров. Ежегодно производят и потребляют миллиарды ламп, значительную долю которых пока составляют лампы накаливания и галогенные лампы.

Стремительно растёт потребление современных ламп - компактных люминесцентных и светодиодных. Происходящие изменения в качестве дают надежду на то, что источники света станут важным инструментом дизайнера, архитектора, проектировщика.

Об освещённости и цветовой температуре света

Ряд параметров ламп определяет насколько они применимы в том или ином проекте.

Световой поток определяет количество света, которое дает лампа (измеряется в люменах). Установленная в люстре лампа накаливания мощностью 100 Вт имеет световой поток 1200 лм, 35-ватная «галогенка» - 600 лм, а натриевая лампа мощностью 100 Вт - 10 000 лм.

У разных типов ламп разная световая отдача , определяющая эффективность преобразования электрической энергии в свет и, следовательно, разную экономическую эффективность применения. Световую отдачу лампы измеряют в лм/Вт (светотехники говорят «люменов с ватта», имея в виду, что каждый ватт потребляемой электроэнергии «преобразуется» в некоторое количество люменов светового потока).

Переходя от количества к качеству, рассмотрим цветовую температуру (Т цв, единица измерения - градус Кельвина) и индекс цветопередачи (Ra). При выборе ламп дизайнер обязательно учитывает цветовую температуру для той или иной установки. Комфортная среда сильно зависит от того, какой свет в помещении «тёплый» или «холодный» (чем выше цветовая температура, тем «холоднее» свет).

Цветопередача - важный параметр, о котором часто забывают. Чем более сплошной и равномерный спектр у лампы, тем различимее цвета предметов в её свете. У Солнца сплошной спектр излучения и наилучшая цветопередача, при этом Т цв меняется от 6000К в полдень до 1800К в рассветные и закатные часы. Но далеко не все лампы могут сравниться с Солнцем.

Если у искусственных источников теплового излучения сплошной спектр и нет проблем с цветопередачей, то разрядные лампы , имеющие в своем спектре полосы и линии, сильно искажают цвета предметов.

Индекс цветопередачи тепловых источников равен 100, для разрядных он колеблется от 20 до 98. Правда, индекс цветопередачи не даёт сделать вывод о характере передачи цветов, а иногда способен запутать дизайнера. Так, у люминесцентных ламп и у белых светодиодов хорошая цветопередача (Ra=80), но при этом они неудовлетворительно передают некоторые цвета.

Другой крайний случай, когда индекс цветопередачи более 90 - в этом случае некоторые цвета воспроизводятся неестественно насыщенными.

Лампы выходят из строя. Кроме того, световой поток лампы уменьшается в процессе работы. Срок службы - основной эксплуатационный параметр источников света.

Проектируя осветительную установку нельзя забывать об обслуживании, т. к. частая замена ламп увеличивает стоимость эксплуатации и вносит дискомфорт.

Лампы накаливания

Вольфрамовая спираль в колбе разогревается под действием электрического тока. Для сокращения скорости распыления вольфрама и соответственно увеличения срока службы лампы колба наполняется инертным газом. По принципу действия лампа накаливания относится к тепловым источникам света, т. е. значительная доля потребляемой энергии расходуется на тепловое и инфракрасное излучение.

Типичная для ламп накаливания световая отдача 10–15 лм/Вт, а срок службы редко превышает 2000 часов. Достоинства этих ламп: низкая цена и качество света (Т цв =2700, Ra=100). Сплошной спектр качественно воспроизводит цвета окружающих предметов. Лампы накаливания постепенно вытесняются разрядными источниками света и светодиодными лампами.

Галогенные лампы накаливания

Добавление галогенов в колбу лампы накаливания и использование кварцевого стекла позволили сделать серьезный шаг вперёд, получив новый класс источников света - галогенные лампы накаливания. Световая отдача современных ГЛН составляет 30 лм/Вт. Типичное значение цветовой температуры 3000К и индекс цветопередачи 100. «Точечная» форма источника света с помощью отражателей даёт управлять пучком света.

Получающийся при этом искристый свет определил приоритет таких ламп в интерьерном дизайне, где они заняли лидерство. Ещё одно преимущество в том, что количество и качество света лампы постоянно на протяжении срока службы. Популярны низковольтные «галогенки» мощностью 10–75 Вт с отражателем, который фокусирует луч в угле 10–40°.

Недостатки ГЛН очевидны: малая световая отдача, короткий срок службы (в среднем 2000–4000 часов), необходимость использования (для низковольтных) понижающих трансформаторов. Там, где эстетический компонент важнее экономического, с ними приходится мириться.

Люминесцентные лампы

Люминесцентные лампы (ЛЛ) - разрядные лампы низкого давления - представляют собой цилиндрическую трубку с электродами, которая наполнена инертным газом и малым количеством ртути. При включении в трубке возникает дуговой разряд, и атомы ртути начинают излучать видимый свет и ультрафиолет. Нанесённый на стенки трубки люминофор под действием ультрафиолетовых лучей излучает видимый свет.

Основа светового потока лампы - излучение люминофора, видимые линии ртути составляют лишь малую часть. Многообразие люминофоров (смесей люминофоров) позволяет получить источники света с различным спектральным составом, который определяет цветовую температуру и индекс цветопередачи.

Люминесцентные лампы дают мягкий, равномерный свет, но его распределением в пространстве трудно управлять из-за большой поверхности излучения. Для работы люминесцентных ламп необходима специальная пускорегулирующая аппаратура. Лампы долговечны - срок службы до 20 000 часов.

Световая отдача и срок службы сделали их самыми распространёнными источниками света в офисном освещении.

Компактные люминесцентные лампы

Развитие люминесцентных ламп привели к созданию компактных люминесцентных ламп (КЛЛ). Это источник света похожий на миниатюрную люминесцентную, иногда с встроенным электронным пускорегулирующим аппаратом и резьбовым цоколем Е27 (для непосредственной замены ламп накаливания), Е14 и др.

Различие заключается в уменьшенном диаметре трубки и использовании другого типа люминофора. Компактная люминесцентная лампа может с успехом заменить лампы накаливания.

Разрядные лампы высокого давления

Последние разработки позволяют использовать для освещения разрядные лампы высокого давления. По ряду показателей подходят металлогалогенные (МГЛ). У этих ламп во внешней колбе размещается горелка с излучающие добавки. В горелке присутствует некоторое количество ртути, галоген (чаще йод) и атомы химических элементов (Tl, In, Th, Na, Li и др.).

Сочетание излучающих добавок достигает интересных параметров: высокая световая отдача (до 100 лм/Вт), отличная цветопередача Rа=80–98, диапазон Тцв от 3000 К до 6000 К, средний срок службы до 15 000 часов. Для работы этих ламп требуется пускорегулирующие аппараты и специальные светильники. Рекомендуется использовать эти источники для освещения помещений с большой площадью, с высокими потолками, просторных залов.

Светодиодные лампы

Светодиоды - полупроводниковые светоизлучающие приборы, называют источниками света будущего. Если говорить о современном состоянии «твердотельной светотехники», можно утверждать, что она вышла из периода младенчества. Достигнутые характеристики светодиодов (световая отдача до 140 лм/Вт, Rа=80–95, срок службы 70 000 часов) уже обеспечили лидерство во многих областях.

Диапазон мощностей светодиодных источников, реализация в лампах разных типов цоколей, управление лампами позволили в короткий срок удовлетворить растущие требования к источникам света. Главными преимуществами светодиодов остаются компактные размеры и управления цветовыми параметрами (цветодинамика).

Лампа накаливания источник света с излучателем в виде проволоки (нити или спирали) из тугоплавкого металла (обычно вольфрама), накаливаемой электрическим током до температуры 2 5003 300 К, близкой к температуре плавления вольфрама (рис. 5). Световая отдача лампы накаливания 1035 лм/Вт; срок службы до 2 тыс. ч. Этот вид ламп все еще преобладает и производится в широком ассортименте, несмотря на имеющиеся в производстве более экономичные источники света. По конструкции лампы накаливания бывают вакуумные (НВ), газонаполненные (НГ), биспиральные (НБ), биспиральные с криптоно-ксеноновым наполнением (НБК). Имеются также зеркальные лампы , являющиеся лампами-светильниками.

Все большее распространение получают галогенные лампы накаливания. Наличие в колбе лампы паров галогенов (йода или брома), уменьшающих количество испарения вольфрама, позволило повысить температуру накала вольфрамовой нити, в результате чего световая отдача увеличивается до 40 лм/Вт и спектр излучаемого света приближается к естественному. Кроме того пары вольфрама, испаряющегося с нити накала, соединяются с йодом и вновь оседают на нить, препятствуя ее истощению. Срок службы этих ламп увеличился до 35 тыс. ч. Двухцокольные линейные галогенные лампы (рис. 5, г ) используются для освещения широких поверхностей. Благодаря применению упрочненных держателей, нити накала обладают высокой устойчивостью к механическим воздействиям. Лампы совмещают в себе высокую светоотдачу, отличный коэффициент цветопередачи, постоянный световой поток в течение всего срока службы, мгновенное перезажигание, возможности регулировки яркости.

Преимущества ламп накаливания:

– малая стоимость;

– отсутствие необходимости пускорегулирующей аппаратуры, при включении зажигаются практически мгновенно;

– возможность работы как на постоянном токе (любой полярности), так и на переменном;

– возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);

– отсутствие токсичных компонентов и как следствие отсутствие необходимости инфраструктуры по сбору и утилизации;

– отсутствие мерцания и гудения при работе на переменном токе;

– непрерывный спектр излучения;

– устойчивость к электромагнитному импульсу;

– возможность использования регуляторов яркости;

– независимость работы от условий окружающей среды и температуры;

– световой поток к концу срока службы снижается незначительно (на 15 %).

Недостатки:

– низкая световая отдача (в три–шесть раз меньше, чем у газоразрядных ламп);

– относительно малый срок службы;

– зависимость световой отдачи и срока службы от напряжения;

– цветовая температура лежит в пределах 2 300–2 900 K (преобладают желтые и красные лучи, что искажает цветопередачу, поэтому их не применяют при работах, требующих различения цветов );

– световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности, потребляемой от электрической сети, весьма мал и не превышает 4 %;

– температура колбы галогенных ламп может достигать 500 °С, поэтому при установке ламп следует соблюдать нормы противопожарной безопасности (например, обеспечить достаточное расстояние между поверхностью перекрытия и подвесным потолком);

– обладают большой яркостью, но не дают равномерного распределения светового потока, для исключения прямого попадания света в глаза и вредного воздействия большой яркости на зрение нить накаливания лампы необходимо закрывать;

– при применении открытых ламп почти половина светового потока не используется для освещения рабочих поверхностей, поэтому ЛН необходимо устанавливать в осветительной арматуре.

Ограничения импорта, закупок и производства. В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу, во многих странах введен или планируется ввод запрета на производство, закупку и импорт ламп накаливания, с целью стимулирования замены их на энергосберегающие лампы (компактные люминесцентные лампы и др.).

С 1 сентября 2009 г. в Евросоюзе вступил в силу поэтапный запрет на производство, закупку магазинами и импорт ламп накаливания (за исключением специальных ламп). С 2009 г. запрет коснется ламп мощностью ≥ 100 Вт, ламп с матовой колбой ≥ 75 Вт и др.; ожидается, что к 2012 г. будет запрещен импорт и производство ламп накаливания меньшей мощности.

23 ноября 2009 г. президент России подписал принятый ранее Госдумой закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации». Согласно документу, с 1 января 2011 г. к обороту на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более; с 1 января 2013 г. – электроламп мощностью 75 Вт и более, а с 1 января 2014 г. – ламп мощностью 25 Вт и более.

Основные характеристики ламп накаливания (ЛН) :

– номинальное значение напряжения;

– номинальное значение мощности;

– номинальное значение светового потока (иногда силы света);

– срок службы;

L , диаметр D ).

Технические данные ламп накаливания приведены в табл. 1 прил. 2 .

В настоящее время все большее применение находят газоразрядные лампы , в которых излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции. Основным преимуществом газоразрядных ламп является их экономичность. Световая отдача этих ламп колеблется в пределах 40...110 лм/Вт. Срок их службы доходит до 12 тыс. ч. С их помощью легче создать равномерное освещение, спектр их излучения ближе к естественному свету.

По составу среды различают следующие газоразрядные лампы:

– с газом;

– с парами металлов и различных соединений.

По давлению :

– газоразрядные лампы низкого давления (от 0,1 до 25 кПа);

– газоразрядные лампы высокого давления (от 25 до 1000 кПа);

– газоразрядные лампы сверхвысокого давления (от 1000 кПа).

По типу разряда :

– дуговые;

– тлеющие;

– импульсные.

По источнику излучения :

– газоразрядные лампы, у которых источником света являются атомы, ионы или молекулы;

– фотолюминесцентные лампы, у которых источником света являются люминофоры, возбуждаемые разрядом;

– электродосветные лампы, у которых источником света являются электроды, раскаленные до высокой температуры.

По охлаждению :

– газоразрядные лампы с естественным охлаждением;

– газоразрядные лампы с принудительным охлаждением.

Наиболее распространены газоразрядные лампынизкого давления люминесцентные (рис. 6). Световая отдача – до 100 лм/Вт. Они имеют форму цилиндрической стеклянной трубки с двумя электродами. Трубка наполнена дозированным количеством ртути (3080 мг) и смесью инертных газов (часто аргон) при давлении около 400 Па (3 мм рт. ст.). По обоим концам трубки закреплены электроды. При включении электрический ток, протекающий между электродами, вызывает в парах ртути электрический разряд, сопровождающийся излучением (электролюминесценция). Внутренняя поверхность трубки покрыта тонким слоем люминофора, который преобразует ультрафиолетовое излучение, возникающее при газовом электрическом разряде, в видимый свет. В зависимости от состава люминофора люминесцентные лампы обладают различной цветностью. В настоящее время промышленность выпускает несколько типов люминесцентных ламп, отличающихся по цветности: лампы дневного света (ЛД), лампы дневного света с улучшенной цветопередачей (ЛДЦ), лампы наиболее близкие к естественному свету (ЛЕ), лампы белого цвета (ЛБ), лампы теплого белого цвета (ЛТБ), лампы холодного белого цвета (ЛХБ), лампы дневного света с исправленной цветопередачей (ЛДЦ), лампы рефлекторные с внутренним отражающим слоем (ЛР) и др.

Преимущества люминесцентных ламп:

– широкий диапазон цветности;

– благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи;

– по сравнению с лампами накаливания обеспечивают такой же световой поток, но потребляют в 45 раз меньше энергии;

– имеют низкую температуру колбы;

– повышенный срок службы (до 615 тыс. ч.).

Недостатки люминесцентных ламп:

– относительная сложность схемы включения, шум дросселей;

– ограниченная единичная мощность и большие размеры при данной мощности;

– невозможность переключения ламп, работающих на переменном токе, на питание от сети постоянного тока;

– зависимость характеристик от температуры внешней среды (световой поток снижается при повышенных температурах);

– значительное снижение потока к концу срока службы;

– относительная дороговизна;

– вредные для зрения пульсации светового потока с частотой 100 Гц при переменном токе 50 Гц;

– срок действия компактных ЛЛ не всегда соответствует заявленному и может быть сравним со сроком ламп накаливания при существенно большей стоимости.

Пульсация светового потока возникает вследствие малой инерционности свечения люминофора. Это может привести к появлению стробоскопического эффекта , который проявляется в искажении зрительного восприятия движущихся или вращающихся объектов. При кратности или совпадении частоты пульсации светового потока и частоты вращения объекта вместо одного предмета видны изображения нескольких, искажаются скорость и направление движения. Стробоскопический эффект очень опасен, так как вращающиеся части механизмов, детали, инструмент могут показаться неподвижными и стать причиной травматизма.

Основные характеристики люминесцентных ламп :

– номинальная мощность;

– номинальное напряжение;

– номинальный ток лампы;

– световой поток;

– габаритные размеры (полная длина L , диаметр D );

– пульсации светового потока.

Технические данные основных типов ЛЛ приведены в табл. 2 Приложения 2 .

К газоразрядным лампам высокого и сверхвысокого давления относят лампы: ДРЛ дуговые ртутные люминесцентные; ДРЛР рефлекторные дуговые ртутные лампы с отражающим слоем; ДРИ ртутные лампы высокого давления с добавкой иодидов металла; ДКсТ дуговые ксеноновые трубчатые и др.

Принцип действия ламп ДРЛ (рис. 7): в горелке из прочного тугоплавкого химически стойкого прозрачного материала в присутствии газов и паров металлов возникает свечение разряда электролюминесценция. При подаче напряжения на лампу между близко расположенными главным катодом и дополнительным электродом обратной полярности на обоих концах горелки начинается ионизация газа. Когда степень ионизации газа достигает определенного значения, разряд переходит на промежуток между главными катодами, так как они включены в цепь тока без добавочных сопротивлений, и поэтому напряжение между ними выше. Стабилизация параметров наступает через 1015 минут после включения (в зависимости от температуры окружающей среды, чем холоднее, тем дольше будет разгораться лампа).

Электрический разряд в газе создает видимое белое, без красной и голубой составляющих спектра, и невидимое ультрафиолетовое излучение, вызывающее красноватое свечение люминофора. Эти свечения суммируются, в результате получается яркий свет, близкий к белому.

При изменении напряжения сети на 1015 % в большую или меньшую сторону работающая лампа отзывается соответствующим повышением или потерей светового потока на 2530 %. При напряжении менее 80 % сетевого лампа может не зажечься, а в горящем состоянии погаснуть.

При горении лампа сильно нагревается, после выключения должна остыть перед следующим включением.

Лампы ДРЛ позволяют создавать большие уровни освещенности и рекомендуются к применению при высоте помещения более 12...14 м, при наличии в воздухе дыма, пыли и копоти. Однако по спектральному составу излучения они сильно отличаются от люминесцентных. Их нельзя применять там, где недопустимо искажение цветовосприятия.

Наиболее экономичными являются ДРИ ртутные лампы высокого давления с добавкой иодидов металла , их часто называют металлогалогенными. Светоотдача этих ламп достигает 80 лм/Вт.

Трубчатые ксеноновые газоразрядные лампы высокого давления ДКсТ (дуговые ксеноновые трубчатые), имеющие высокую мощность (от 2 до 100 кВт), применяются в основном для наружного освещения в связи с опасностью ультрафиолетового облучения работающих в помещении. Разработаны специальные ксеноновые лампы ДКсТЛ в колбе из легированного кварца, предназначенные для применения в производственных помещениях, расположенных на Севере нашей страны, где они служат одновременно и для ультрафиолетового облучения работающих.

Натриевые газоразрядные лампы высокого давления ДНаТ (дуговые натриевые трубчатые) обладают наивысшей эффективностью и удовлетворительной цветопередачей. Применяются для освещения помещений с большой высотой, где требования к цветопередаче невысоки или в декоративных целях.

Преимущества ламп ДРИ:

– большой срок службы (до 12–20 тыс. ч.);

– большая световая отдача;

– компактность при большой единичной мощности;

– обеспечивают более равномерное освещение и рекомендованы для применения в светильниках общего освещения.

Недостатки :

– преобладание в спектре сине-зеленой части, ведущее к неудовлетворительной цветопередаче;

– возможность работы только на переменном токе;

– длительность разгорания при включении (примерно 7 мин) и начало повторного зажигания после даже очень кратковременного перерыва питания лампы лишь после остывания (примерно 10 мин);

– пульсации светового потока больше, чем у люминесцентных ламп;

– значительное снижение светового потока к концу срока службы (до 70 %);

– наличие ртути (от 20 до 150 мг ртути).

Повреждения герметичности лампы ДРЛ вполне хватит, чтобы серьезно загрязнить, например, цех авиационного завода размерами сто на триста метров и с высотой потолков до 10 метров.

Технические данные ламп ДРЛ приведены в табл. 3 прил. 2 .

Светодиодное освещение – одно из перспективных направлений технологий искусственного освещения, основанное на использовании светодиодов в качестве источника света. Светодиод или светоизлучающий диод (СД, СИД, LED – англ. Light-emitting diode ) полупроводниковый прибор, излучающий свет при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника.

Светодиодное освещение, благодаря эффективному расходу электроэнергии и простоте конструкции, нашло широкое применение в ручных осветительных приборах, в светотехнике для создания дизайнерского освещения специальных современных дизайн-проектов. Надежность светодиодных источников света позволяет использовать их в труднодоступных для частой замены местах (встроенное потолочное освещение и т. д.).

Преимущества светодиодного освещения:

– экономичность – световая отдача светодиодных систем уличного освещения достигает 140 лм/Вт;

– срок службы в 30 раз больше по сравнению с лампами накаливания;

– возможность получать различные спектральные характеристики без применения светофильтров;

– малые размеры;

– отсутствие ртутных паров (в сравнении с люминесцентными лампами);

– малое ультрафиолетовое и инфракрасное излучение;

– незначительное относительное тепловыделение (для маломощных устройств);

– высокая прочность.

Недостатки :

– высокая цена (отношение цена/люмен у сверхъярких светодиодов в 50–100 раз больше, чем у обычной лампы накаливания);

– низкая предельная температура: мощные осветительные светодиоды требуют внешнего радиатора для охлаждения;

– необходимость низковольтного источника питания постоянного тока для обеспечения питания светодиодов от сети;

– высокий коэффициент пульсаций светового потока при питании напрямую от сети промышленной частоты.

Создание в производственных помещениях качественного и эффективного освещения невозможно без рациональных светильников .

Электрический светильник это совокупность источника света и осветительной арматуры, предназначенной для перераспределения излучаемого источником светового потока в требуемом направлении, предохранения глаз рабочего от слепящего действия ярких элементов источника света, защиты источника от механических повреждений, воздействия окружающей среды и эстетического оформления помещения.

Тип светильников определяется характером производственного помещения и технологического процесса, необходимой безопасностью, качеством освещения и удобством обслуживания . Слепящее действие света устраняется при правильном выборе высоты подвеса определенного типа светильника.

Важной характеристикой светильника является его коэффициент полезного действия – отношение фактического светового потока светильника Ф ф к световому потоку помещенной в него лампы Ф л, т. е.
.

По распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отраженного и преимущественно отраженного света.

В качестве источников искусственного освещения применяются лампы накаливания и газоразрядные лампы.

В лампах накаливания источником света является раскаленная вольфрамовая проволока. Эти лампы дают непрерывный спектр излучения с повышенной (по сравнению с естественным светом) интенсивностью в желто-красной области спектра. По конструкции лампы накаливания бывают вакуумные, газонаполненные, бесспиральные (галогенные).

Общим недостатком ламп накаливания является сравнительно небольшой срок службы (менее 2000 часов), сильное отличие спектрального состава излучения от естественного (нарушается правильная цветопередача) и малая световая отдача y (отношение создаваемого лампой светового потока к потребляемой электрической мощности) (y = 8-20 лм/Вт, при идеальных условиях 1 Вт соответствует 683 лм). В промышленности они находят применение для организации местного освещения.

Наибольшее применение в промышленности находят газоразрядные лампы низкого и высокого давления.

Газоразрядные лампы низкого давления, называемые люминесцентными , содержат стеклянную трубку, внутренняя поверхность которой покрыта люминофором, наполненную дозированным количеством паров металлов (натрия, ртути 30 - 80 мг), галогенов (йод, фтор) и смесью инертных газов под давлением около 400 Па. На противоположных концах внутри трубки размещаются электроды, между которыми, при включении лампы в сеть, возникает газовый разряд, сопровождающийся излучением преимущественно в ультрафиолетовой области спектра. Это излучение, в свою очередь, преобразуется люминофором в видимое световое излучение. В зависимости от состава люминофора люминесцентные лампы обладают различной цветностью.

В последние годы появились газоразрядные лампы низкого давления со встроенным высокочастотным преобразователем. Газовый разряд в таких лампах (называемый вихревым) возбуждается на высоких частотах (десятки кГц) за счет чего обеспечивается очень высокая светоотдача.

К газоразрядным лампам высокого давления (0,03-0,08 МПа) относят дуговые ртутные люминесцентные лампы (ДРЛ), по форме напоминающие вытянутые лампы накаливания. В спектре излучения этих ламп преобладают составляющие зелено-голубой области спектра.

Основными достоинствами газоразрядных ламп является их долговечность (свыше 10 000 часов: до 20 000 часов), экономичность, малая себестоимость изготовления, благоприятный спектр излучения (близкий к солнечному спектру), обеспечивающий высокое качество цветопередачи, низкая температура поверхности. Светоотдача y этих ламп колеблется в пределах от 30 до 105 лм/Вт (ДРЛ – до 65 лм/Вт, люминесцентные – до 90 лм/Вт, ксеноновые и натриевые – 110…200 лм/Вт), что в несколько раз превышает светоотдачу ламп накаливания.


К недостаткам этих ламп следует отнести наличие вредных веществ при их разгерметизации, радиопомехи, сложную и дорогостоящую пускорегулирующую арматуру, громоздкость и невозможность быстрого вторичного включения лампы при кратковременном отключении, а также длительность выхода отдельных типов ламп на номинальный режим (ДРЛ – до 3…5 мин). Существенным и наверное основным недостатком ГРЛ является пульсация светового потока.

1.4. НОРМИРОВАНИЕ ИСКУССТВЕННОГО ОСВЕЩЕНИЯ

Наименьшая освещенность рабочих поверхностей в производственных помещениях устанавливается в зависимости от характеристики зрительной работы и регламентируется строительными нормами и правилами СНиП 23-05-95 «Естественное и искусственное освещение».

Характеристика зрительной работы определяется минимальным размером объекта различения, контрастом объекта с фоном и свойствами фона.

Объект различения - рассматриваемый предмет, отдельная его часть или дефект, который следует контролировать в процессе работы.

Фон - поверхность, прилегающая непосредственно к объекту различения, на которой он рассматривается. Фон считается:

светлым при коэффициенте отражения r светового потока поверхностью более 0,4; средне светлым при коэффициенте отражения от 0,2 до 0,4; темным при коэффициенте отражения менее 0,2.

Контраст объекта различения с фоном (К) определяется отношением абсолютной величины разности яркостей объекта В О и фона В Ф к наибольшей их этих двух яркостей. Контраст считается большим при значении К более 0,5; средним - при значениях К от 0,2 до 0,5; малым - при значениях К менее 0,2.

В соответствии со СНиП 23-05-95 все зрительные работы делятся на 8 разрядов в зависимости от размера объекта различения и условий зрительной работы. Допустимые значения наименьшей освещенности рабочих поверхностей в производственных помещениях в соответствии со СНиП 23.05-95 приведены в приложении 1. (В зарубежных нормах размер объекта различения часто указывают в угловых минутах).

Кроме цветности источников света и цветовой отделки интерьера, влияющих на субъективную оценку освещения, важным параметром, характеризующим качество освещения, является коэффициент пульсации Кп:

К п = [(Е max - E min)/2Eср]*100% , (4)

где: E max - максимальное значение пульсирующей освещенности на рабочей поверхности; Е min - минимальное значение пульсирующей освещенности; Е ср - среднее значение освещенности за период колебаний.

Для газоразрядных ламп К п » 25...65 %, для обычных ламп накаливания К п » 7 %, для галогенных ламп накаливания К п » 1 %.

Пульсации освещенности на рабочей поверхности не только утомляют зрение, но и могут вызывать неадекватное восприятие наблюдаемого объекта за счет появления стробоскопического эффекта. Стробоскопический эффект - кажущееся изменение или прекращение движения объекта, освещаемого светом, периодически изменяющимся с определенной частотой. Например, если вращающийся белый диск с черным сектором освещать пульсирующим световым потоком (вспышками), то сектор будет казаться: неподвижным при частоте f всп = f вращ, медленно вращающимся в обратную сторону при f всп > f вращ медленно вращающимся в ту же сторону при f всп < f вращ, где f всп и f вращ соответственно частоты вспышек и вращения диска. Пульсации освещенности на вращающихся объектах могут вызывать видимость их неподвижности, что в свою очередь, может явиться причиной травматизма.

Значение К п меняется от нескольких процентов (для ламп накаливания) до нескольких десятков процентов (для люминесцентных ламп). Малое значение К п для ламп накаливания объясняется большой тепловой инерцией нити накала, препятствующей заметному уменьшению светового потока F лн ламп в момент перехода мгновенного значения переменного напряжения сети через 0 (Рис.1). В то же время газоразрядные лампы обладают малой инерцией и меняют свой сетевой поток F лл почти пропорционально амплитуде сетевого напряжения (рис.1).

Для уменьшения коэффициента пульсации освещенности К п люминесцентные лампы включаются в разные фазы трехфазной электрической сети. Это хорошо поясняет нижняя кривая на рис.1а, где показан характер изменения во времени светового потока (и связанной с ним освещенности), создаваемого тремя люминесцентными лампами 3F лл включенными в три различные фазы сети. В последнем случае за счет сдвига фаз на 1/3 периода провалы в световом потоке каждой из ламп компенсируются световыми потоками двух других ламп, так что пульсации суммарного светового потока существенно уменьшаются. При этом среднее значение освещенности, создаваемой лампой, остается неизменным и не зависит от способа их включения.

В соответствии со СНиП 23-05-95 коэффициент пульсации освещенности К п нормируется в зависимости от разряда зрительных работ с сочетании с показателем ослепленности Р:

P = (s - 1)*10 3 , (5)

где s - коэффициент ослепленности, определяемый как:

s = (DBпор) s / DВпор, (6)

где DВпор - пороговая разность яркости объекта и фона при обнаружении объекта на фоне равномерной яркости, (DBпор) s - то же при наличии в поле зрения блёского (яркого) источника света.

На освещенность рабочих поверхностей в производственном помещении влияют отражение и поглощение света стенами, потолком и другими поверхностями, расстояние от светильника до рабочей поверхности, состояние излучающей поверхности светильника, наличие рассеивателя света и т.д. Вследствие этого полезно используется лишь часть светового потока, излучаемого источником света.