Как происходит передача информации от рецептора в мозг! Научная библиотека - рефераты - принципы передачи информации и структурная организация мозга Передача и принятие информации в мозг

При этом, несмотря на доли секунды задержки, реализованный учеными интерфейс мозг-компьютер-интернет-компьютер-мозг, позволил одному человеку управлять движениями другого человека. В связи с тем, что данные работы проводятся под эгидой Исследовательского управления армии США (Army Research Office), совершенно неудивительно, что в последней демонстрации использовалась игра-стрелялка и выполнялась имитация действий с взрывными устройствами. Американские военные видят в такой технологии возможность при помощи прямой информационной передачи обойти языковый барьер и различия в опыте между двумя людьми, которым требуется совместными усилиями выполнить некоторую, возможно опасную, работу.

Первая демонстрация работоспособности этой системы была проведена в прошлом году. А нынешняя демонстрация не только подтвердила работоспособность самой идеи, но и показала некоторые расширенные ее возможности. Как и раньше, один из участников, тот, который дистанционно управляет действиями другого человека, одевает ЭЭГ-датчики, при помощи которых компьютер считывает картины мозговой деятельности определенных участков мозга. Эти данные оцифровываются и передаются через Интернет другому компьютеру, который выполняет всю последовательность в обратном порядке. Второй человек, исполнитель, находится под воздействием магнитного поля, индуцируемого катушкой, направленной в область мозга, которая управляет движениями рук. Человек-оператор может послать команду другому человеку и для этого ему не нужно даже двигаться, ему достаточно только представить себе, будто бы он двигает своей рукой. Человек-исполнитель получает команды извне при помощи технологии трансчерепного магнитного возбуждения и его руки движутся независимо от его сознания.

В своих экспериментах исследователи проверили работоспособность системы на трех парах участников. Оператор и исполнитель всегда находились в двух зданиях, расстояние между которыми было равно 1.5 километрам и между которыми была проложена только одна линия цифровой связи. «Первый оператор был задействован в компьютерной игре, в которой он должен был защитить город от нападения, используя оружие различных типов и сбивая ракеты, запускаемые неприятелем. При этом, он был полностью лишен возможности физического воздействия на игровой процесс. Единственный способ, которым оператор мог играть в игру, заключался в мысленном управлении движениями своих рук и пальцев, - пишут исследователи из Вашингтона. - Точность игры от пары к паре различалась весьма сильно и составляла от 25 до 83 процентов. А самый большой уровень ошибок пришелся на долю ошибки выполнения команды „огонь“».

В настоящее время исследователи получили грант в размере миллиона долларов от фонда W. M. Keck Foundation, благодаря которому они смогут продолжить и расширить область своих исследований. В рамках нового этапа исследователи собираются научиться расшифровывать и передавать более сложные мозговые процессы, расширить количество типов передаваемой информации, что позволит реализовать передачу понятий, мыслей и правил. Благодаря этому, по крайней мере на это рассчитывают ученые, станет возможной реализация в недалеком будущем таких фантастических технологий, при помощи которых, к примеру, блестящие ученые смогут передавать ученикам свои знания напрямую, или виртуозные музыканты или хирурги смогут дистанционно производить операции, действуя руками других людей.

Особая организация работы нервной системы человека даёт возможность ощущать и воспринимать объективный мир. С мозгом связаны все органы чувств. Каждый орган чувства реагирует на стимулы определённой модальности:

Органы зрения на световое воздействие,

Органы слуха на волновые колебания воздуха,

Органы осязания на механическое воздействие,

Органы вкуса на химическое воздействие в области рта,

Органы обоняния на химическое воздействие в области носа.

Чтобы мозг отреагировал на раздражитель, в каждой сенсорной модальности сначала должно произойти преобразование соответствующей физической энергии в электрические. Далее эти сигналы - каждый своим путём - следуют в мозг. Данный процесс перевода физической энергии в электрическую осуществляют специальные клетки в органах чувств, называемые рецепторами.

Зрительные рецепторы расположены тонким слоем на внутренней стороне глаза. В каждом зрительном рецепторе есть химическое вещество, реагирующее на свет, и эта реакция запускает ряд событий, в результате которых возникает нервный импульс.

Слуховые рецепторы это тонкие волосяные клетки, расположенные глубоко в ухе. Вибрации воздуха изгибают эти волосяные клетки, в результате чего и возникает нервный импульс.

Подобные "хитрости" природа придумала и для других сенсорных модальностей.

Рецептор это нейрон, то есть нервная клетка, хотя и специализированная. Возбуждённый рецептор посылает электрический сигнал промежуточным нейронам. Те - в рецептивную зону коры головного мозга. У каждой сенсорной модальности имеется своя рецептивная зона.

В рецептивной или иной зоне коры возникает уже осознанное переживание ощущения. Мозг и сознание воспринимают не только воздействие раздражителя, но и ряд характеристик раздражителя, например интенсивность воздействия.

Чем больше интенсивность воздействия, тем выше частота нервных импульсов - таким образом природа закодировала это соответствие. Чем выше частота нервных импульсов - тем больше воспринимаемая интенсивность стимула мозгом и сознанием.

Для более точной спецификации сигнала (например какого цвета свет, или какого вкуса еда) существуют специфичные нейроны (один нейрон передаёт информацию о синем цвете, другой о зелёном, третий о кислой еде, четвёртый о солёной...).

В звуковом восприятии особенности ощущения могут кодироваться формой электрического сигнала, поступающего в мозг. Если форма сигнала близка к синусоиде, этот звук нам приятен.

Литература

Аткинсон Р. Л., Агкинсон Р. С., Смит Э. Е. Введение в психологию: Учебник для университетов / Пер. с англ. под. ред. В. П. Зинченко. - М.: Тривола, 1999.

От сетчатки глаза сигналы направляются в центральную часть анализатора по зрительному нерву, состоящему почти из миллиона нервных волокон. На уровне зрительного перекреста около половины волокон переходит в про­тивоположное полушарие головного мозга, оставшаяся половина поступа­ет в то же (ипсилатеральное) полушарие. Первое переключение волокон зрительного нерва происходит в латеральных коленчатых телах таламуса. От­сюда новые волокна направляются через мозг к зрительной коре большого мозга (рис. 5.17).

По сравнению с сетчаткой коленчатое тело являет собой сравнительно простое образование. Здесь есть лишь один синапс, поскольку приходящие волокна зрительного нерва оканчиваются на клетках, которые посылают свои импульсы в кору. Коленчатое тело содержит шесть слоев клеток, каждый из которых получает вход только от одного глаза. Четыре верхних являются мел­коклеточными, два нижних - крупноклеточными, поэтому верхние слои на­зываются парвоцеллюлярными (parvo - мелкий, cellula - клетка, лат.} а ниж­ние - магноцеллюлярными (magnus - большой, лат.) (рис. 5.18).

Эти два типа слоев получают информацию от различных ганглиозных клеток, связанных с различными типами биполярных клеток и рецепторов. Каждая клетка коленчатого тела активируется от рецептивного поля сетчат­ки и имеет “on”- или “ofrV-центры и периферию обратного знака. Однако между клетками коленчатого тела и ганглиозными клетками сетчатки суще-

Рис. 5 17 Передача зрительной информации в мозг. 1- глаз; 2 - сетчатка; 3 - зрительный нерв; 4 - зрительный перекрест; 5 - наружное коленчатое тело, 6 - зрительная радиация; 7 - зрительная кора; 8 - затылочные доли (Линдсней, Норман, 1974)

мозга - физическая основа зрения. Большинство путей, ведущих от сетчатки к зрительной коре в задней части полушарий, проходит через наружное коленчатое тело. На поперечном срезе этой подкорковой структуры видны шесть клеточных слоев, два из которых соответ­ствуют магноцеллюлярным связям (М), а четыре - парвоцеллюлярным (П) (Зеки, 1992).

ствуют различия, из которых наиболее существенным является значитель­но более выраженная способность периферии рецептивного поля клеток ко­ленчатого тела подавлять эффект центра, т. е. они в большей степени спе­циализированы (Хьюбель, 1974).

Нейроны латеральных коленчатых тел посылают свои аксоны в первич­ную зрительную кору, называемую также зоной VI (visual - зрительный, англ.). Первичная зрительная (стриарная) кора состоит из двух параллель­ных и в значительной степени независимых систем - магноцеллюлярной и парвоцеллюлярной, названных соответственно слоям коленчатых тел тала-муса (Zeki, Shopp, 1988). Магноцеллюлярная система встречается у всех мле­копитающих и поэтому имеет более раннее происхождение. Парвоцеллю-лярная система есть только у приматов, что свидетельствует о ее более по­зднем эволюционном происхождении (Carlson, 1992). Магноцеллюлярная система включена в анализ форм, движения и глубины зрительного про­странства. Парвоцеллюлярная система участвует в зрительных функциях, получивших развитие у приматов, таких как цветовое восприятие и точное определение мелких деталей (Merigan, 1989).

Связь коленчатых тел и стриарной коры осуществляется с высокой то­пографической точностью: зона VI фактически содержит “карту” всей по­верхности сетчатки. Поражение любого участка нервного пути, связываю­щего сетчатку с зоной VI, приводит к появлению поля абсолютной слепоты, размеры и положение которого точно соответствуют протяженности и ло-

кализации повреждения в зоне VI. С. Хеншен назвал эту зону корковой сет­чаткой (Зеки, 1992).

Волокна, идущие от латеральных коленчатых тел, контактируют с клет­ками четвертого слоя коры. Отсюда информация, в конечном счете, распро­страняется во все слои. Клетки третьего и пятого слоев коры посылают свои аксоны в более глубокие структуры мозга. Большинство связей между клет­ками стриарной коры идут перпендикулярно поверхности, боковые связи преимущественно короткие. Это позволяет предположить наличие локаль­ности при обработке информации в этой области.

Участок сетчатки, который воздействует на простую клетку коры (рецеп­тивное поле клетки) подобно полям нейронов сетчатки и коленчатых тел, разделен на “on”- и “offr-области. Однако эти поля далеки от правильной окружности. В типичном случае рецептивное поле состоит из очень длин­ной и узкой “оп”-области, к которой примыкают с двух сторон более ши­рокие “о!Г”-участки (Хьюбель, 1974).