Возведение в степень, правила, примеры. Возведение алгебраической дроби в степень: правило, примеры Возведение дроби в степень


Пришло время ознакомиться с возведением алгебраической дроби в степень . Это действие с алгебраическими дробями по смыслу степени сводится к умножению одинаковых дробей. В этой статье мы дадим соответствующее правило, и рассмотрим примеры возведения алгебраических дробей в натуральную степень.

Навигация по странице.

Правило возведение алгебраической дроби в степень, его доказательство

Прежде чем говорить о возведении в степень алгебраической дроби, не помешает вспомнить, что представляет собой произведение одинаковых множителей, стоящих в основании степени, а их количество определяется показателем. Например, 2 3 =2·2·2=8 .

А теперь вспомним правило возведения в степень обыкновенной дроби – для этого нужно отдельно возвести в указанную степень числитель, и отдельно – знаменатель. К примеру, . Указанное правило распространяется на возведение алгебраической дроби в натуральную степень.

Возведение алгебраической дроби в натуральную степень дает новую дробь, в числителе которой указанная степень числителя исходной дроби, а в знаменателе – степень знаменателя. В буквенном виде этому правилу соответствует равенство , где a и b – произвольные многочлены (в частных случаях одночлены или числа), причем b – ненулевой многочлен, а n – .

Доказательство озвученного правила возведения алгебраической дроби в степень основано на определении степени с натуральным показателем и на том, как мы определили умножение алгебраических дробей : .

Примеры, решения

Полученное в предыдущем пункте правило сводит возведение алгебраической дроби в степень к возведению в эту степень числителя и знаменателя исходной дроби. А так как числителем и знаменателем исходной алгебраической дроби являются многочлены (в частном случае одночлены или числа), то исходное задание сводится к возведению в степень многочленов . После выполнения этого действия будет получена новая алгебраическая дробь, тождественно равная указанной степени исходной алгебраической дроби.

Рассмотрим решения нескольких примеров.

Пример.

Возведите алгебраическую дробь в квадрат.

Решение.

Запишем степень . Теперь обращаемся к правилу возведения алгебраической дроби в степень, оно нам дает равенство . Осталось преобразовать полученную дробь к виду алгебраической дроби, выполнив возведение одночленов в степень . Так .

Обычно при возведении алгебраической дроби в степень ход решения не поясняют, а решение записывают кратко. Нашему примеру отвечает запись .

Ответ:

.

Когда в числителе и/или в знаменателе алгебраической дроби находятся многочлены, особенно двучлены, то при ее возведении в степень целесообразно использовать соответствующие формулы сокращенного умножения .

Пример.

Возведите алгебраическую дробь во вторую степень.

Решение.

По правилу возведения дроби в степень имеем .

Для преобразования полученного выражения в числителе воспользуемся формулой квадрата разности , а в знаменателе – формулой квадрата суммы трех слагаемых :

Ответ:

В заключение отметим, что если мы возводим в натуральную степень несократимую алгебраическую дробь, то в результате тоже получится несократимая дробь. Если же исходная дробь сократима, то перед возведением ее в степень целесообразно выполнить сокращение алгебраической дроби , чтобы не выполнять сокращение после возведения в степень.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта , включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

На уроке будет рассмотрен более обобщенный вариант умножения дробей - это возведение в степень. Прежде всего, речь будет идти о натуральной степени дроби и о примерах, демонстрирующих подобные действия с дробями. В начале урока, также, мы повторим возведение в натуральную степень целых выражений и увидим, каким образом это пригодится для решения дальнейших примеров.

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Возведение алгебраической дроби в степень

1. Правила возведения дробей и целых выражений в натуральную степень с элементарными примерами

Правило возведения обыкновенных и алгебраических дробей в натуральную степень:

Можно провести аналогию со степенью целого выражения и вспомнить, что понимается под возведением его в степень:

Пример 1. .

Как видно из примера, возведение дроби в степень - это частный случай умножения дробей, что изучалось на предыдущем уроке.

Пример 2. а) , б) - минус уходит, т. к. мы возвели выражение в четную степень.

Для удобства работы со степенями вспомним основные правила возведения в натуральную степень:

- произведение степеней;

- деление степеней;

Возведение степени в степень;

Степень произведения.

Пример 3. - это известно нам еще с темы «Возведение в степень целых выражений», кроме одного случая: не существует.

2. Простейшие примеры на возведение алгебраических дробей в натуральную степень

Пример 4. Возвести дробь в степень .

Решение. При возведении в четную степень минус уходит:

Пример 5. Возвести дробь в степень .

Решение. Теперь пользуемся правилами возведения степени в степень сразу без отдельного расписывания:

.

Теперь рассмотрим комбинированные задачи, в которых нам будет необходимо и возводить дроби в степень, и умножать их, и делить.

Пример 6. Выполнить действия .

Решение. . Далее необходимо произвести сокращение. Распишем один раз подробно, как мы это будем делать, а затем будем указывать результат сразу по аналогии: . Аналогично (или по правилу деления степеней) . Имеем: .

Пример 7. Выполнить действия .

Решение. . Сокращение осуществлено по аналогии с примером, разобранным ранее.

Пример 8. Выполнить действия .

Решение. . В данном примере мы еще раз более подробно расписали процесс сокращения степеней в дробях, чтобы закрепить этот способ.

3. Более сложные примеры на возведение алгебраических дробей в натуральную степень (с учетом знаков и со слагаемыми в скобках)

Пример 9. Выполнить действия .

Решение. В данном примере уже пропустим отдельное умножение дробей, а сразу воспользуемся правилом их умножения и запишем под один знаменатель. При этом следим за знаками - в указанном случае дроби возводятся в четные степени, поэтому минусы исчезают. В конце выполним сокращение.

Пример 10. Выполнить действия .

Решение. В данном примере присутствует деление дробей, вспомним, что при этом первая дробь умножается на вторую, но перевернутую.


В продолжение разговора про степень числа логично разобраться с нахождением значения степени. Этот процесс получил название возведение в степень . В этой статье мы как раз изучим, как выполняется возведение в степень, при этом затронем все возможные показатели степени – натуральный, целый, рациональный и иррациональный. И по традиции подробно рассмотрим решения примеров возведения чисел в различные степени.

Навигация по странице.

Что значит «возведение в степень»?

Начать следует с объяснения, что называют возведением в степень. Вот соответствующее определение.

Определение.

Возведение в степень – это нахождение значения степени числа.

Таким образом, нахождение значение степени числа a с показателем r и возведение числа a в степень r – это одно и то же. Например, если поставлена задача «вычислите значение степени (0,5) 5 », то ее можно переформулировать так: «Возведите число 0,5 в степень 5 ».

Теперь можно переходить непосредственно к правилам, по которым выполняется возведение в степень.

Возведение числа в натуральную степень

На практике равенство на основании обычно применяется в виде . То есть, при возведении числа a в дробную степень m/n сначала извлекается корень n -ой степени из числа a , после чего полученный результат возводится в целую степень m .

Рассмотрим решения примеров возведения в дробную степень.

Пример.

Вычислите значение степени .

Решение.

Покажем два способа решения.

Первый способ. По определению степени с дробным показателем . Вычисляем значение степени под знаком корня, после чего извлекаем кубический корень: .

Второй способ. По определению степени с дробным показателем и на основании свойств корней справедливы равенства . Теперь извлекаем корень , наконец, возводим в целую степень .

Очевидно, что полученные результаты возведения в дробную степень совпадают.

Ответ:

Отметим, что дробный показатель степени может быть записан в виде десятичной дроби или смешанного числа, в этих случаях его следует заменить соответствующей обыкновенной дробью, после чего выполнять возведение в степень.

Пример.

Вычислите (44,89) 2,5 .

Решение.

Запишем показатель степени в виде обыкновенной дроби (при необходимости смотрите статью ): . Теперь выполняем возведение в дробную степень:

Ответ:

(44,89) 2,5 =13 501,25107 .

Следует также сказать, что возведение чисел в рациональные степени является достаточно трудоемким процессом (особенно когда в числителе и знаменателе дробного показателя степени находятся достаточно большие числа), который обычно проводится с использованием вычислительной техники.

В заключение этого пункта остановимся на возведении числа нуль в дробную степень. Дробной степени нуля вида мы придали следующий смысл: при имеем , а при нуль в степени m/n не определен. Итак, нуль в дробной положительной степени равен нулю, например, . А нуль в дробной отрицательной степени не имеет смысла, к примеру, не имеют смысла выражения и 0 -4,3 .

Возведение в иррациональную степень

Иногда возникает необходимость узнать значение степени числа с иррациональным показателем . При этом в практических целях обычно достаточно получить значение степени с точностью до некоторого знака. Сразу отметим, что это значение на практике вычисляется с помощью электронной вычислительной техники, так как возведение в иррациональную степень вручную требует большого количества громоздких вычислений. Но все же опишем в общих чертах суть действий.

Чтобы получить приближенное значение степени числа a с иррациональным показателем , берется некоторое десятичное приближение показателя степени , и вычисляется значение степени . Это значение и является приближенным значением степени числа a с иррациональным показателем . Чем более точное десятичное приближение числа будет взято изначально, тем более точное значение степени будет получено в итоге.

В качестве примера вычислим приближенное значение степени 2 1,174367... . Возьмем следующее десятичное приближение иррационального показателя: . Теперь возведем 2 в рациональную степень 1,17 (суть этого процесса мы описали в предыдущем пункте), получаем 2 1,17 ≈2,250116 . Таким образом, 2 1,174367... ≈2 1,17 ≈2,250116 . Если взять более точное десятичное приближение иррационального показателя степени, например, , то получим более точное значение исходной степени: 2 1,174367... ≈2 1,1743 ≈2,256833 .

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).