В какой части клетки образуются рибосомы. Рибосома: функции и строение. Рибосомы: строение и функции

Соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы.

РНК большой субъединицы

Высокомолекулярная РНК, составляющая структурную основу большой субъединицы рибосомы, обозначается как 23S рРНК (в случае бактериальных рибосом) или 23S-подобная рРНК (в других случаях). Бактериальная 23S рРНК, также как и 16S рРНК, представляет собой одну ковалентно непрерывную полирибонуклеотидную цепь. В то же время 23S-подобная рРНК цитоплазматических рибосом эукариот состоит из двух прочно ассоциированных полирибонуклеотидных цепей - 28S и 5,8S рРНК (5,8S рРНК является структурным эквивалентом 5′-концевого ~160-нуклеотидного сегмента 23S рРНК, который оказался «отщеплён» в виде ковалентно обособленного фрагмента). 23S-подобная рРНК рибосом пластидов растений также состоит из двух прочно ассоциированных полирибонуклеотидных цепей и содержит 4,5S рРНК - структурный эквивалент 3′-концевого сегмента 23S рРНК. Известны случаи и ещё более глубоко зашедшей фрагментированности РНК, примером чего может служить 23S-подобная рРНК цитоплазматических рибосом некоторых протистов. Так, у Crithidia fasciculata она состоит из 7 отдельных фрагментов, а у Euglena gracilis - из 14.

Кроме вышеуказанной 23S(-подобной) рРНК, большая субъединица обычно содержит также относительно низкомолекулярную РНК - так называемую 5S рРНК. В отличие от вышеупомянутых 5,8S и 4,5S рРНК, 5S рРНК менее прочно ассоциирована с 23S(-подобной) рРНК, транскрибируется с отдельного гена и, таким образом, не может быть рассмотрена как отщеплённый фрагмент высокополимерной рРНК. 5S рРНК входит в состав большой субъединицы цитоплазматических рибосом всех прокариот и эукариот, но, по-видимому, не является непременной составляющей любой функциональной рибосомы, так как 5S рРНК отсутствуют в митохондриальных рибосомах млекопитающих (так называемых «минирибосомах»).

Число нуклеотидных звеньев, как и константы седиментации, для образцов 23S и 23S-подобных рРНК из различных источников могут существенно различаться. Например, 23S рРНК Escherichia coli состоит из 2904 нуклеотидных остатков, цитоплазматическая 26S рРНК Saccharomyces cerevisiae - из 3392, митохондриальная 26S рРНК Saccharomyces cerevisiae - из 3273, цитоплазматическая 28S рРНК Homo sapiens - из 5025. Большие субъединицы митохондриальных рибосом млекопитающих содержат относительно короткие 23S-подобные рРНК - всего 1560-1590 нуклеотидных остатков. Молекула 5,8S рРНК комплекса 28S 5,8S рРНК, характерного для цитоплазматических эукариотических рибосом, имеет длину около 160 нуклеотидных остатков. Длина 5S рРНК довольно консервативна и составляет 115-125 нуклеотидных остатков.

Рибосомные белки

Помимо рРНК, рибосома содержит также около 50 (прокариотические рибосомы) или 80 (цитоплазматические рибосомы эукариот) различных белков . Почти каждый из этих белков представлен лишь одной копией на каждую рибосому. Преобладают умеренно-осно́вные белки. Большинство рибосомных белков эволюционно консервативны, многие белки рибосом из различных источников могут быть соотнесены как гомологи , что учитывается в современной универсальной номенклатуре рибосомных белков. Рибосома на 30-50 % состоит из белка.

Низкомолекулярные компоненты

Кроме биополимеров (РНК и белков) в состав рибосом входят также некоторые низкомолекулярные компоненты. Это молекулы воды, ионы металлов (главным образом Mg 2+ - до 2 % сухой массы рибосомы), ди- и полиамины (такие как путресцин , кадаверин , спермидин , спермин - могут составлять до 2,5 % сухой массы рибосомы).

Механизм трансляции

Далее, тРНК, комплементарная следующему кодону мРНК, связывается с освободившимся А-сайтом рибосомы, что ведёт к повторению описанных шагов, а образуемый полипептид удлинняется на один аминокислотный остаток с каждым циклом. Стоп-кодоны (UGA, UAG и UAA) сигнализируют об окончании трансляции. Процесс окончания трансляции и освобождения готового полипетида, рибосомы и мРНК называется терминацией. У прокариот он происходит при участии факторов терминации RF1, RF2, RF3 и RRF.

История исследований рибосомы

Рибосомы впервые были описаны как уплотнённые частицы, или гранулы, американским клеточным биологом румынского происхождения Джорджем Паладе в середине 1950-х годов . В 1974 г. Паладе, Клод и Кристиан Де Дюв получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся структурной и функциональной организации клетки».

Термин «рибосома» был предложен Ричардом Робертсом в 1958 вместо «рибонуклеопротеидная частица микросомальной фракции» на первом симпозиуме, посвящённом этим частицам и их роли в биосинтезе белка . Биохимические и мутационные исследования рибосомы начиная с 1960-х позволили описать многие функциональные и структурные особенности рибосомы.

В начале 2000-х были построены модели с атомным разрешением (до 2,4 Å) структур отдельных субъединиц, а также полной прокариотической рибосомы, связанной с различными субстратами, которые позволили понять механизм декодинга (распознавания антикодона тРНК, комплементарного кодону мРНК) и детали взаимодействий между рибосомой, тРНК , мРНК , факторами трансляции, а также различными антибиотиками . Это крупнейшее достижение в молекулярной биологии было отмечено Нобелевской премией по химии 2009 года («За исследования структуры и функций рибосомы»). Награды были удостоены американец Томас Стейц , британец индийского происхождения Венкатраман Рамакришнан и израильтянка Ада Йонат . В 2010 году в лаборатории Марата Юсупова была определена трехмерная структура эукариотической рибосомы .

В 2009 году канадские биохимики Константин Боков и Сергей Штейнберг из Монреальского университета, исследовав третичную структуру рибосомной РНК бактерии Escherichia coli , пришли к выводу, что рибосомы могли сформироваться в результате постепенной эволюции из очень простой маленькой молекулы РНК - «проторибосомы», способной катализировать реакцию соединения двух аминокислот . Все остальные структурные блоки рибосомы последовательно добавлялись к проторибосоме, не нарушая её структуру и постепенно повышая эффективность её работы .

Напишите отзыв о статье "Рибосома"

Примечания

  1. , с. 109.
  2. , с. 120-121.
  3. , с. 110.
  4. , с. 110-111.
  5. , с. 133-134.
  6. , с. 136-137.
  7. , с. 84-85.
  8. , с. 84.
  9. Sievers A, Beringer M, Rodnina MV, Wolfenden R. The ribosome as an entropy trap. Proc Natl Acad Sci U S A. 2004 May 25;101(21):7897-901.
  10. T.M. Schmeing, K.S. Huang, S.A. Strobel and T.A. Steitz, An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438 (2005), pp. 520-524.
  11. A.E. Hesslein, V.I. Katunin, M. Beringer, A.B. Kosek, M.V. Rodnina and S.A. Strobel, Exploration of the conserved A+C wobble pair within the ribosomal peptidyl transferase center using affinity purified mutant ribosomes, Nucleic Acids Res. 32 (2004), pp. 3760-3770.
  12. P. Nissen, J. Hansen, N. Ban, P.B. Moore and T.A. Steitz, The structural basis of ribosome activity in peptide bond synthesis, Science 289 (2000), pp. 920-930.
  13. T.M. Schmeing, K.S. Huang, D.E. Kitchen, S.A. Strobel and T.A. Steitz, Structural insights into the roles of water and the 2′ hydroxyl of the P site tRNA in the peptidyl transferase reaction, Mol. Cell 20 (2005), pp. 437-448
  14. G.E. Palade. (1955) «A small particulate component of the cytoplasm.» J Biophys Biochem Cytol. Jan;1(1): pages 59-68. PMID 14381428
  15. Roberts, R. B., editor. (1958) «Introduction» in Microsomal Particles and Protein Synthesis. New York: Pergamon Press, Inc.
  16. Ben-Shem A., Jenner L., Yusupova G., Yusupov M. «Crystal structure of the eukaryotic ribosome.» // Science. 2010. V. 330. P. 1203-1209.
  17. Konstantin Bokov, Sergey V. Steinberg. «A hierarchical model for evolution of 23S ribosomal RNA» // Nature. 2009. V. 457. P. 977-980.

Литература

Спирин А. С. Молекулярная биология. Рибосомы и биосинтез белка / Рецензенты: акад. РАН, д-р хим. наук, проф. Богданов А. А.; чл.-кор. РАН, д-р хим. наук Цетлин В. И.; ред. Пирогова И. В.; тех. ред. Крайнова О. Н.; комп. верстка Никитина Г. Ю.; кор. Петрова Г. Н.. - изд. (2). - М .: «Академия», 2011. - 496 + 16 (цв. илл.) с. - (Высшее профессиональное образование). - 1000 экз. - ISBN 978-5-7695-6668-4 .

Ссылки

  • «Тайна происхождения рибосом разгадана?», Александр Марков, 27.02.2009
  • Сайт одного из ведущих учёных по исследованию структуры рибосом, содержит большое количество иллюстраций, в том числе анимированных (англ.)

Отрывок, характеризующий Рибосома

Люди этой партии говорили и думали, что все дурное происходит преимущественно от присутствия государя с военным двором при армии; что в армию перенесена та неопределенная, условная и колеблющаяся шаткость отношений, которая удобна при дворе, но вредна в армии; что государю нужно царствовать, а не управлять войском; что единственный выход из этого положения есть отъезд государя с его двором из армии; что одно присутствие государя парализует пятьдесят тысяч войска, нужных для обеспечения его личной безопасности; что самый плохой, но независимый главнокомандующий будет лучше самого лучшего, но связанного присутствием и властью государя.
В то самое время как князь Андрей жил без дела при Дриссе, Шишков, государственный секретарь, бывший одним из главных представителей этой партии, написал государю письмо, которое согласились подписать Балашев и Аракчеев. В письме этом, пользуясь данным ему от государя позволением рассуждать об общем ходе дел, он почтительно и под предлогом необходимости для государя воодушевить к войне народ в столице, предлагал государю оставить войско.
Одушевление государем народа и воззвание к нему для защиты отечества – то самое (насколько оно произведено было личным присутствием государя в Москве) одушевление народа, которое было главной причиной торжества России, было представлено государю и принято им как предлог для оставления армии.

Х
Письмо это еще не было подано государю, когда Барклай за обедом передал Болконскому, что государю лично угодно видеть князя Андрея, для того чтобы расспросить его о Турции, и что князь Андрей имеет явиться в квартиру Бенигсена в шесть часов вечера.
В этот же день в квартире государя было получено известие о новом движении Наполеона, могущем быть опасным для армии, – известие, впоследствии оказавшееся несправедливым. И в это же утро полковник Мишо, объезжая с государем дрисские укрепления, доказывал государю, что укрепленный лагерь этот, устроенный Пфулем и считавшийся до сих пор chef d"?uvr"ом тактики, долженствующим погубить Наполеона, – что лагерь этот есть бессмыслица и погибель русской армии.
Князь Андрей приехал в квартиру генерала Бенигсена, занимавшего небольшой помещичий дом на самом берегу реки. Ни Бенигсена, ни государя не было там, но Чернышев, флигель адъютант государя, принял Болконского и объявил ему, что государь поехал с генералом Бенигсеном и с маркизом Паулучи другой раз в нынешний день для объезда укреплений Дрисского лагеря, в удобности которого начинали сильно сомневаться.
Чернышев сидел с книгой французского романа у окна первой комнаты. Комната эта, вероятно, была прежде залой; в ней еще стоял орган, на который навалены были какие то ковры, и в одном углу стояла складная кровать адъютанта Бенигсена. Этот адъютант был тут. Он, видно, замученный пирушкой или делом, сидел на свернутой постеле и дремал. Из залы вели две двери: одна прямо в бывшую гостиную, другая направо в кабинет. Из первой двери слышались голоса разговаривающих по немецки и изредка по французски. Там, в бывшей гостиной, были собраны, по желанию государя, не военный совет (государь любил неопределенность), но некоторые лица, которых мнение о предстоящих затруднениях он желал знать. Это не был военный совет, но как бы совет избранных для уяснения некоторых вопросов лично для государя. На этот полусовет были приглашены: шведский генерал Армфельд, генерал адъютант Вольцоген, Винцингероде, которого Наполеон называл беглым французским подданным, Мишо, Толь, вовсе не военный человек – граф Штейн и, наконец, сам Пфуль, который, как слышал князь Андрей, был la cheville ouvriere [основою] всего дела. Князь Андрей имел случай хорошо рассмотреть его, так как Пфуль вскоре после него приехал и прошел в гостиную, остановившись на минуту поговорить с Чернышевым.
Пфуль с первого взгляда, в своем русском генеральском дурно сшитом мундире, который нескладно, как на наряженном, сидел на нем, показался князю Андрею как будто знакомым, хотя он никогда не видал его. В нем был и Вейротер, и Мак, и Шмидт, и много других немецких теоретиков генералов, которых князю Андрею удалось видеть в 1805 м году; но он был типичнее всех их. Такого немца теоретика, соединявшего в себе все, что было в тех немцах, еще никогда не видал князь Андрей.
Пфуль был невысок ростом, очень худ, но ширококост, грубого, здорового сложения, с широким тазом и костлявыми лопатками. Лицо у него было очень морщинисто, с глубоко вставленными глазами. Волоса его спереди у висков, очевидно, торопливо были приглажены щеткой, сзади наивно торчали кисточками. Он, беспокойно и сердито оглядываясь, вошел в комнату, как будто он всего боялся в большой комнате, куда он вошел. Он, неловким движением придерживая шпагу, обратился к Чернышеву, спрашивая по немецки, где государь. Ему, видно, как можно скорее хотелось пройти комнаты, окончить поклоны и приветствия и сесть за дело перед картой, где он чувствовал себя на месте. Он поспешно кивал головой на слова Чернышева и иронически улыбался, слушая его слова о том, что государь осматривает укрепления, которые он, сам Пфуль, заложил по своей теории. Он что то басисто и круто, как говорят самоуверенные немцы, проворчал про себя: Dummkopf… или: zu Grunde die ganze Geschichte… или: s"wird was gescheites d"raus werden… [глупости… к черту все дело… (нем.) ] Князь Андрей не расслышал и хотел пройти, но Чернышев познакомил князя Андрея с Пфулем, заметив, что князь Андрей приехал из Турции, где так счастливо кончена война. Пфуль чуть взглянул не столько на князя Андрея, сколько через него, и проговорил смеясь: «Da muss ein schoner taktischcr Krieg gewesen sein». [«То то, должно быть, правильно тактическая была война.» (нем.) ] – И, засмеявшись презрительно, прошел в комнату, из которой слышались голоса.
Видно, Пфуль, уже всегда готовый на ироническое раздражение, нынче был особенно возбужден тем, что осмелились без него осматривать его лагерь и судить о нем. Князь Андрей по одному короткому этому свиданию с Пфулем благодаря своим аустерлицким воспоминаниям составил себе ясную характеристику этого человека. Пфуль был один из тех безнадежно, неизменно, до мученичества самоуверенных людей, которыми только бывают немцы, и именно потому, что только немцы бывают самоуверенными на основании отвлеченной идеи – науки, то есть мнимого знания совершенной истины. Француз бывает самоуверен потому, что он почитает себя лично, как умом, так и телом, непреодолимо обворожительным как для мужчин, так и для женщин. Англичанин самоуверен на том основании, что он есть гражданин благоустроеннейшего в мире государства, и потому, как англичанин, знает всегда, что ему делать нужно, и знает, что все, что он делает как англичанин, несомненно хорошо. Итальянец самоуверен потому, что он взволнован и забывает легко и себя и других. Русский самоуверен именно потому, что он ничего не знает и знать не хочет, потому что не верит, чтобы можно было вполне знать что нибудь. Немец самоуверен хуже всех, и тверже всех, и противнее всех, потому что он воображает, что знает истину, науку, которую он сам выдумал, но которая для него есть абсолютная истина. Таков, очевидно, был Пфуль. У него была наука – теория облического движения, выведенная им из истории войн Фридриха Великого, и все, что встречалось ему в новейшей истории войн Фридриха Великого, и все, что встречалось ему в новейшей военной истории, казалось ему бессмыслицей, варварством, безобразным столкновением, в котором с обеих сторон было сделано столько ошибок, что войны эти не могли быть названы войнами: они не подходили под теорию и не могли служить предметом науки.
В 1806 м году Пфуль был одним из составителей плана войны, кончившейся Иеной и Ауерштетом; но в исходе этой войны он не видел ни малейшего доказательства неправильности своей теории. Напротив, сделанные отступления от его теории, по его понятиям, были единственной причиной всей неудачи, и он с свойственной ему радостной иронией говорил: «Ich sagte ja, daji die ganze Geschichte zum Teufel gehen wird». [Ведь я же говорил, что все дело пойдет к черту (нем.) ] Пфуль был один из тех теоретиков, которые так любят свою теорию, что забывают цель теории – приложение ее к практике; он в любви к теории ненавидел всякую практику и знать ее не хотел. Он даже радовался неуспеху, потому что неуспех, происходивший от отступления в практике от теории, доказывал ему только справедливость его теории.
Он сказал несколько слов с князем Андреем и Чернышевым о настоящей войне с выражением человека, который знает вперед, что все будет скверно и что даже не недоволен этим. Торчавшие на затылке непричесанные кисточки волос и торопливо прилизанные височки особенно красноречиво подтверждали это.
Он прошел в другую комнату, и оттуда тотчас же послышались басистые и ворчливые звуки его голоса.

Не успел князь Андрей проводить глазами Пфуля, как в комнату поспешно вошел граф Бенигсен и, кивнув головой Болконскому, не останавливаясь, прошел в кабинет, отдавая какие то приказания своему адъютанту. Государь ехал за ним, и Бенигсен поспешил вперед, чтобы приготовить кое что и успеть встретить государя. Чернышев и князь Андрей вышли на крыльцо. Государь с усталым видом слезал с лошади. Маркиз Паулучи что то говорил государю. Государь, склонив голову налево, с недовольным видом слушал Паулучи, говорившего с особенным жаром. Государь тронулся вперед, видимо, желая окончить разговор, но раскрасневшийся, взволнованный итальянец, забывая приличия, шел за ним, продолжая говорить:
– Quant a celui qui a conseille ce camp, le camp de Drissa, [Что же касается того, кто присоветовал Дрисский лагерь,] – говорил Паулучи, в то время как государь, входя на ступеньки и заметив князя Андрея, вглядывался в незнакомое ему лицо.
– Quant a celui. Sire, – продолжал Паулучи с отчаянностью, как будто не в силах удержаться, – qui a conseille le camp de Drissa, je ne vois pas d"autre alternative que la maison jaune ou le gibet. [Что же касается, государь, до того человека, который присоветовал лагерь при Дрисее, то для него, по моему мнению, есть только два места: желтый дом или виселица.] – Не дослушав и как будто не слыхав слов итальянца, государь, узнав Болконского, милостиво обратился к нему:
– Очень рад тебя видеть, пройди туда, где они собрались, и подожди меня. – Государь прошел в кабинет. За ним прошел князь Петр Михайлович Волконский, барон Штейн, и за ними затворились двери. Князь Андрей, пользуясь разрешением государя, прошел с Паулучи, которого он знал еще в Турции, в гостиную, где собрался совет.
Князь Петр Михайлович Волконский занимал должность как бы начальника штаба государя. Волконский вышел из кабинета и, принеся в гостиную карты и разложив их на столе, передал вопросы, на которые он желал слышать мнение собранных господ. Дело было в том, что в ночь было получено известие (впоследствии оказавшееся ложным) о движении французов в обход Дрисского лагеря.
Первый начал говорить генерал Армфельд, неожиданно, во избежание представившегося затруднения, предложив совершенно новую, ничем (кроме как желанием показать, что он тоже может иметь мнение) не объяснимую позицию в стороне от Петербургской и Московской дорог, на которой, по его мнению, армия должна была, соединившись, ожидать неприятеля. Видно было, что этот план давно был составлен Армфельдом и что он теперь изложил его не столько с целью отвечать на предлагаемые вопросы, на которые план этот не отвечал, сколько с целью воспользоваться случаем высказать его. Это было одно из миллионов предположений, которые так же основательно, как и другие, можно было делать, не имея понятия о том, какой характер примет война. Некоторые оспаривали его мнение, некоторые защищали его. Молодой полковник Толь горячее других оспаривал мнение шведского генерала и во время спора достал из бокового кармана исписанную тетрадь, которую он попросил позволения прочесть. В пространно составленной записке Толь предлагал другой – совершенно противный и плану Армфельда и плану Пфуля – план кампании. Паулучи, возражая Толю, предложил план движения вперед и атаки, которая одна, по его словам, могла вывести нас из неизвестности и западни, как он называл Дрисский лагерь, в которой мы находились. Пфуль во время этих споров и его переводчик Вольцоген (его мост в придворном отношении) молчали. Пфуль только презрительно фыркал и отворачивался, показывая, что он никогда не унизится до возражения против того вздора, который он теперь слышит. Но когда князь Волконский, руководивший прениями, вызвал его на изложение своего мнения, он только сказал:
– Что же меня спрашивать? Генерал Армфельд предложил прекрасную позицию с открытым тылом. Или атаку von diesem italienischen Herrn, sehr schon! [этого итальянского господина, очень хорошо! (нем.) ] Или отступление. Auch gut. [Тоже хорошо (нем.) ] Что ж меня спрашивать? – сказал он. – Ведь вы сами знаете все лучше меня. – Но когда Волконский, нахмурившись, сказал, что он спрашивает его мнение от имени государя, то Пфуль встал и, вдруг одушевившись, начал говорить:
– Все испортили, все спутали, все хотели знать лучше меня, а теперь пришли ко мне: как поправить? Нечего поправлять. Надо исполнять все в точности по основаниям, изложенным мною, – говорил он, стуча костлявыми пальцами по столу. – В чем затруднение? Вздор, Kinder spiel. [детские игрушки (нем.) ] – Он подошел к карте и стал быстро говорить, тыкая сухим пальцем по карте и доказывая, что никакая случайность не может изменить целесообразности Дрисского лагеря, что все предвидено и что ежели неприятель действительно пойдет в обход, то неприятель должен быть неминуемо уничтожен.
Паулучи, не знавший по немецки, стал спрашивать его по французски. Вольцоген подошел на помощь своему принципалу, плохо говорившему по французски, и стал переводить его слова, едва поспевая за Пфулем, который быстро доказывал, что все, все, не только то, что случилось, но все, что только могло случиться, все было предвидено в его плане, и что ежели теперь были затруднения, то вся вина была только в том, что не в точности все исполнено. Он беспрестанно иронически смеялся, доказывал и, наконец, презрительно бросил доказывать, как бросает математик поверять различными способами раз доказанную верность задачи. Вольцоген заменил его, продолжая излагать по французски его мысли и изредка говоря Пфулю: «Nicht wahr, Exellenz?» [Не правда ли, ваше превосходительство? (нем.) ] Пфуль, как в бою разгоряченный человек бьет по своим, сердито кричал на Вольцогена:
– Nun ja, was soll denn da noch expliziert werden? [Ну да, что еще тут толковать? (нем.) ] – Паулучи и Мишо в два голоса нападали на Вольцогена по французски. Армфельд по немецки обращался к Пфулю. Толь по русски объяснял князю Волконскому. Князь Андрей молча слушал и наблюдал.
Из всех этих лиц более всех возбуждал участие в князе Андрее озлобленный, решительный и бестолково самоуверенный Пфуль. Он один из всех здесь присутствовавших лиц, очевидно, ничего не желал для себя, ни к кому не питал вражды, а желал только одного – приведения в действие плана, составленного по теории, выведенной им годами трудов. Он был смешон, был неприятен своей ироничностью, но вместе с тем он внушал невольное уважение своей беспредельной преданностью идее. Кроме того, во всех речах всех говоривших была, за исключением Пфуля, одна общая черта, которой не было на военном совете в 1805 м году, – это был теперь хотя и скрываемый, но панический страх перед гением Наполеона, страх, который высказывался в каждом возражении. Предполагали для Наполеона всё возможным, ждали его со всех сторон и его страшным именем разрушали предположения один другого. Один Пфуль, казалось, и его, Наполеона, считал таким же варваром, как и всех оппонентов своей теории. Но, кроме чувства уважения, Пфуль внушал князю Андрею и чувство жалости. По тому тону, с которым с ним обращались придворные, по тому, что позволил себе сказать Паулучи императору, но главное по некоторой отчаянности выражении самого Пфуля, видно было, что другие знали и он сам чувствовал, что падение его близко. И, несмотря на свою самоуверенность и немецкую ворчливую ироничность, он был жалок с своими приглаженными волосами на височках и торчавшими на затылке кисточками. Он, видимо, хотя и скрывал это под видом раздражения и презрения, он был в отчаянии оттого, что единственный теперь случай проверить на огромном опыте и доказать всему миру верность своей теории ускользал от него.
Прения продолжались долго, и чем дольше они продолжались, тем больше разгорались споры, доходившие до криков и личностей, и тем менее было возможно вывести какое нибудь общее заключение из всего сказанного. Князь Андрей, слушая этот разноязычный говор и эти предположения, планы и опровержения и крики, только удивлялся тому, что они все говорили. Те, давно и часто приходившие ему во время его военной деятельности, мысли, что нет и не может быть никакой военной науки и поэтому не может быть никакого так называемого военного гения, теперь получили для него совершенную очевидность истины. «Какая же могла быть теория и наука в деле, которого условия и обстоятельства неизвестны и не могут быть определены, в котором сила деятелей войны еще менее может быть определена? Никто не мог и не может знать, в каком будет положении наша и неприятельская армия через день, и никто не может знать, какая сила этого или того отряда. Иногда, когда нет труса впереди, который закричит: „Мы отрезаны! – и побежит, а есть веселый, смелый человек впереди, который крикнет: «Ура! – отряд в пять тысяч стоит тридцати тысяч, как под Шепграбеном, а иногда пятьдесят тысяч бегут перед восемью, как под Аустерлицем. Какая же может быть наука в таком деле, в котором, как во всяком практическом деле, ничто не может быть определено и все зависит от бесчисленных условий, значение которых определяется в одну минуту, про которую никто не знает, когда она наступит. Армфельд говорит, что наша армия отрезана, а Паулучи говорит, что мы поставили французскую армию между двух огней; Мишо говорит, что негодность Дрисского лагеря состоит в том, что река позади, а Пфуль говорит, что в этом его сила. Толь предлагает один план, Армфельд предлагает другой; и все хороши, и все дурны, и выгоды всякого положения могут быть очевидны только в тот момент, когда совершится событие. И отчего все говорят: гений военный? Разве гений тот человек, который вовремя успеет велеть подвезти сухари и идти тому направо, тому налево? Оттого только, что военные люди облечены блеском и властью и массы подлецов льстят власти, придавая ей несвойственные качества гения, их называют гениями. Напротив, лучшие генералы, которых я знал, – глупые или рассеянные люди. Лучший Багратион, – сам Наполеон признал это. А сам Бонапарте! Я помню самодовольное и ограниченное его лицо на Аустерлицком поле. Не только гения и каких нибудь качеств особенных не нужно хорошему полководцу, но, напротив, ему нужно отсутствие самых лучших высших, человеческих качеств – любви, поэзии, нежности, философского пытливого сомнения. Он должен быть ограничен, твердо уверен в том, что то, что он делает, очень важно (иначе у него недостанет терпения), и тогда только он будет храбрый полководец. Избави бог, коли он человек, полюбит кого нибудь, пожалеет, подумает о том, что справедливо и что нет. Понятно, что исстари еще для них подделали теорию гениев, потому что они – власть. Заслуга в успехе военного дела зависит не от них, а от того человека, который в рядах закричит: пропали, или закричит: ура! И только в этих рядах можно служить с уверенностью, что ты полезен!“

Рибосома, функции которой будут рассмотрены в этой статье, - это частица, которая расположена непосредственно внутри клетки. Основная функция этой частицы - биосинтез белка. Основная, но не единственная.

Если говорить о вкладе русских ученых в изучении рибосомы, то стоит выделить работу биохимика академика А. С. Спирина.

Внешний вид рибосомы и ее другие особенности

Если внимательно рассмотреть клетку на электронных микрофотографиях, то можно увидеть небольшие частицы, расположенные в цитоплазме. Этими частицами и являются рибосомы.

Название «рибосома» состоит из двух частей. Первая походит от «рибонуклеиновая кислота», а вторая в переводе с греческого «сома» - тело.

Размер рибонуклеиновых частиц клетки колеблется в пределах 15-20 нм, а количество их полностью зависит от процесса биосинтеза белка, а именно - его интенсивности. Как правило, рибосом может быть около 5000 штук, в некоторых случаях - до 90 000. Если говорить о массе этого количества частиц, она порой может доходить до четверти массы самой клетки.

Форма рибосомы больше напоминает сферу, но однозначно констатировать этот факт невозможно. А вот функция рибосом в клетке связана с биосинтезом белка, и это подтвержденный факт.

По своей химической природе эти частицы относятся к нуклеопротеидам (комбинация нуклеиновых кислот с белком), которые состоят из рибонуклеиновой кислоты.

Прокариотический тип

Существует два типа рибосомы, строение и функции которых немного отличаются друг от друга.

Первый тип характерен для клеток бактерий и зеленых водорослей, то есть прокариотических организмов. Ее название - 70S рибосома, функции она выполняет все те же. Число в названии означает коэффициент седиментации (величина, которая определяет размер и форму макромолекул, а также скорость осаждения определенной микрочастицы, в данном случае рибосомы, в достаточно сильном гравитационном поле). Для этого типа он составляет 70 единиц Сведберга. Данные рибосомы состоят из двух неравноправных частиц: 30S и 50S. В первой составляющей находится одна молекула белка, во второй - две молекулы РНК. Основная функция, которую выполняют молекулы белка, входящие в состав рибосомы - структурная.

Эукариотический тип

Второй тип рибосом был обнаружен в клетках эукариотов (растительные или же животные организмы, у которых в клетках присутствует четко выраженное ядро). Название этой субчастицы - 80S. Рибосомы, функции которых заключаются в синтезе белка данного класса, состоят из равных частей РНК и белка. Но все те же две неравные субъединицы есть и в них (60S и 40S).

Рибосомы: строение и функции

Рибосома состоит из двух неравных субъединиц.

Большая субчастица, в свою очередь, состоит из:

  • одной молекулы рибосомальной РНК, которая является высокополимерной;
  • одной молекулы РНК, которая является низкополимерной;
  • некоторого количества молекул белка, как правило, их около трех десятков.

Что касается меньшей субчастицы, то тут немного проще. В ее состав входят:

  • молекула высокополимерной РНК;
  • несколько десятков молекул белка, как правило, около 40 штук (молекулы при этом разнообразные по структуре и форме).

Молекула высокополимерной РНК необходима для того, чтобы все присутствующие белки соединить в одну целостную рибонуклеопротеидную составляющую клетки.

В процессе выполнения основной своей функции, то есть во время синтеза белка, рибосома выполняет и ряд дополнительных:

  1. Связка, а также удержание всех составляющих так называемой белоксинтезирующей системы. Принято называть данную функцию информационной, или матричной. Рибосома функции эти распределяет между двумя своими субчастицами, каждая из которых выполняет свою определенную задачу в данном процессе.
  2. Рибосомы выполняют функцию каталитическую, которая заключается в образовании особой пептидной связи (амидная связь, которая возникает как при образовании белков, так и при возникновении пептидов). Сюда же можно отнести и гидролиз ГТФ (субстрата для синтеза РНК). За выполнение этой функции отвечает большая субъединица рибосомы. Именно в ней находятся специальные участки, в которых и происходит процесс синтеза пептидной связи, а также центр необходимый для гидролиза ГТФ. Помимо этого именно большая субъединица рибосомы во время биосинтеза белка удерживает на себе цепь, которая постепенно вырастает.
  3. Выполняет рибосома функции механического передвижения субстратов, к коим относятся иРНК и тРНК. Иными словами, они отвечают за транслокацию.

В качестве заключения

Буквально каждая из субъединиц рибосомы, как большая, так и маленькая, может проявлять в некоторой степени те функции, которые непосредственно с ней связаны, отдельно от своей «соседки». Однако выполнять функцию транслокации может лишь рибосома в полном составе.

Можно смело сказать, что существует четкое разделение функций между частицами рибосомы. Малая часть отвечает за выполнение приема, а также расшифровку генетической информации. А вот большая частица принимает непосредственное участие в транслитерации.

РИБОСОМА (от «рибонуклеиновая кислота» и греч. «сома» – тело), органоид, синтезирующий белки. Присутствует в клетках всех организмов, как эукариот, так и прокариот. Представляет собой сферическую частицу диаметром ок. 20 нм, состоящую из двух субчастиц, которые могут разъединяться и вновь объединяться. Структурный каркас рибосомы образован молекулами рибосомальной РНК (р-РНК) и связанными с ними белками. В клетках эукариот рибосомы формируются в ядрышке, где на ДНК синтезируется р-РНК, к которой затем присоединяются белки. Субчастицы рибосомы выходят из ядра в цитоплазму, и здесь завершается формирование полноценных рибосом. В цитоплазме рибосомы свободно находятся в цитоплазматическом матриксе (гиалоплазме) или прикрепляются к внешним мембранам ядра и эндоплазматической сети. Свободные рибосомы синтезируют белки для внутренних нужд клетки. Рибосомы на мембранах образуют комплексы – полирибосомы, которые синтезируют белки, поступающие через эндоплазматическую сеть в аппарат Гольджи и затем секретируемые клеткой. Количество рибосом в клетке зависит от интенсивности биосинтеза белка – их больше в клетках активно растущих тканей (меристем растений, зародышей и т. п.). В хлоропластах и митохондриях есть свои собственные мелкие рибосомы, они обеспечивают этим органоидам автономный (независимый от ядра) биосинтез белков (см. Трансляция).

Схема строения рибосомы, сидящей на мембране эндоплазматнческой сети:
1 — малая субъединица;
2 — иРНК;
3 — аминоацил — тРНК;
4 — аминокислота;
5 — большая субъединица;
6 — мембрана эндоплазматической сети;
7 — синтезируемая полипептидная цепь.

Каждая рибосома состоит из двух субчастиц-большой и малой. Рибосомы состоят из примерно равных (по массе) количеств РНК и белка (т.е. представляют собой рибонуклеопротеиновые частицы). Входящая в их состав РНК, называемая рибосомной РНК (рРНК), синтезируется в ядрышке. Вместе те и другие образуют сложную трехмерную структуру, обладающую способностью к самосборке.
Во время синтеза белка на рибосомах аминокислоты, из которых строится полипептидная цепь, последовательно одна за другой присоединяются к растущей цепи. Рибосома служит местом связывания для молекул, участвующих в синтезе, т. е. таким местом, где эти молекулы могут занять по отношению друг к другу совершенно определенное положение. В синтезе участвуют: матричная РНК (мРНК), несущая генетические инструкции от ядра клетки, транспортная РНК (тРНК), доставляющая к рибосоме требуемые аминокислоты, растущая полипептидная цепь, а также ряд факторов, ответственные за инициацию, элонгацию и терминацию цепи.
В эукариотических клетках отчетливо видны две популяции рибосом - свободные рибосомы и рибосомы, присоединенные к эндоплазматическому ретикулуму. Строение тех и других идентично, но часть рибосом связана с эндоплазматическим ретикулоумом через белки, которые они синтезируют. Такие белки обычно секретируются. Примером белка, синтезируемого свободными рибосомами, может служить гемоглобин, образующийся в молодых эритроцитах.
В процессе синтеза белка рибосома перемещается вдоль нитевидной молекулы мРНК. Процесс идет более эффективно, когда вдоль мРНК перемещается не одна рибосома, а одновременно много рибосом, напоминающих в этом случае бусины на нитке. Такие цепи рибосом называются полирибосомами или полисомами. На эндоплазматическом ретикулуме полисомы обнаруживаются в виде характерных завитков.

Рибосомный синтез белка-многоэтапный процесс. Первая стадия (инициация) начинается с присоединения матричной РНК (мРНК) к малой рибосомной субчастице, не связанной с большой субчастицей. Характерно, что для начала процесса необходима именно диссоциированная рибосома. К образовавшемуся т. наз. инициаторному комплексу присоединяется большая рибосомная субчастица. В стадии инициации участвуют спец. инициирующий кодон (см. Генетический код), инициаторная транспортная РНК (тРНК) и специфич. белки (т. наз. факторы инициации). Пройдя стадию инициации, рибосома переходит к последоват. считыванию кодонов мРНК по направлению от 5"- к 3"-концу, что сопровождается синтезом полипептидной цепи белка, кодируемого этой мРНК (подробнее о механизме синтеза полипептидов см. в ст. Трансляция). В этом процессе рибосома функционирует как циклически работающая мол. машина. Рабочий цикл рибосомы при элонгации состоит из трех тактов: 1) кодонзависимого связывания аминоацил-тРНК (поставляет аминокислоты в рибосому), 2) транспептидации-переноса С-конца растущего пептида на аминоацил-тРНК, т.е. удлинения строящейся белковой цепи на одно звено, 3) транслокации-перемещения матрицы (мРНК) и пептидил-тРНК относительно рибосомы и переход рибосомы в исходное состояние, когда она может воспринять след. аминоацил-тРНК. Когда рибосома достигнет специального терминирующего кодона мРНК, синтез полипептида прекращается. При участии специфич. белков (т. наз. факторов терминации) синтезир. полипептид освобождается из рибосомы. После терминации рибосома может повторить весь цикл с др. цепью мРНК или др. кодирующей последовательностью той же цепи.

Схема синтеза полипептидной цепи полирибосомой: I-начал о синтеза, II-окончание синтеза; а-мРНК, б-рибосома, в-большая субъединица рибосомы, г-малая субъединица рибосомы.

В клетках с интенсивной секрецией белка и развитым эндоплазматич. ретикулумом значит. часть цитоплазматической рибосомы прикреплена к его мембране на пов-сти, обращенной к цитоплазме. Эти рибосомы синтезируют полипептиды, к-рые непосредственно транспортируются через мембрану для дальнейшей секреции. Синтез полипептидов для внутриклеточных нужд происходит в осн. на свободных (не связанных с мембраной) рибосомах цитоплазмы. При этом транслирующие рибосомы не равномерно диспергированы в цитоплазме, а собраны в группы. Такие агрегаты рибосом представляют собой структуры, где мРНК ассоциирована со многими рибосомами, находящимися в процессе трансляции; эти структуры получили назв. полирибосом или полисом.

При интенсивном синтезе белка расстояние между рибосомами вдоль цепи мРНК в полирибосоме м. б. предельно коротким, т.е. рибосомы находятся почти вплотную друг к другу. Рибосомы, входящие в полирибосомы, работают независимо и каждая из них синтезирует полную полипептидную цепь.

Рибосома – это тот самый рабочий, который претворяет генеральный план в жизнь, изготовляя по лекалам ДНК соответствующие белки.

Впервые рибосомы были обнаружены в животной клетке в 1955 году. В этом же году были получены данные, что они выполняют важные функции в обмене веществ - являются центрами биосинтеза белка. Рибосомы способствуют реализации наследственной информации клетки и обеспечивают уникальность каждого вида организмов за счёт образования специфичных для него белков.

Локализация

Рибосомы присутствуют во всех типах клеток. Они образуются в ядре, затем выходят из него и размещаются в:

  • цитоплазме;
  • митохондриях;
  • пластидах;
  • на мембранах эндоплазматической сети (ЭПС).

Рис. 1. Рибосомы на мембранах шероховатой ЭПС.

Строение

Рибосома имеет размеры около 25 - 30 нм и состоит из двух неравных частиц, называемых большой и малой субъединицами.

Рис. 2. Строение рибосомы.

Каждая субъединица в процессе синтеза белка выполняет свою функцию. По химическому составу рибосомы являются комплексом белков и РНК, причём именно РНК определяет их свойства.

Синтез белка

Процесс биосинтеза белка чрезвычайно сложен и энергоёмок.
В нём участвуют:

  • регуляторные белки;
  • белки-катализаторы;
  • АТФ и ГТФ, как источники энергии;
  • молекулы транспортной и информационной РНК;
  • ионы магния.

Рибосомы являются центрами и организаторами белоксинтезирующей системы, которая способна работать также и вне клетки.

Транскрипция

Информация о строении белка находится в гене.

ТОП-4 статьи которые читают вместе с этой

В процессе транскрипции в ядре клетки образуется копия гена в виде информационной РНК (и-РНК). Информацией в данном случае является определённая последовательность нуклеотидов, - составных частей и-РНК.

Последовательность нуклеотидов и-РНК кодирует нуклеотидную последовательность ДНК (ген является участком ДНК).

Трансляция

После того, как и-РНК выходит из ядра в цитоплазму, к ней присоединяется рибосома, тем самым инициируя сборку белоксинтезирующей системы.

Затем начинается процесс трансляции - синтеза белковой молекулы из аминокислот, которые доставляются к рибосоме транспортными РНК (т-РНК).

Рис. 3. Схема биосинтеза белка на рибосоме.

После присоединения каждой новой аминокислоты субъединицы рибосомы перемещаются по цепочке и-РНК на один кодон. Кодон - это три нуклеотида, кодирующие определённую аминокислоту.

Всего информация о составе белка переписывается дважды, сначала с ДНК на и-РНК, потом с и-РНК на сам белок. Информация в белке это последовательность аминокислот, а в ДНК и и-РНК - последовательность нуклеотидов.

В процессе биосинтеза белка осуществляются следующие функции рибосом:

  • связка и удержание компонентов белоксинтезирующей системы;
  • катализ реакций, ведущих к образованию пептидных связей;
  • катализ гидролиза ГТФ;
  • механическое перемещение по цепочке и-РНК.

Различия в строении и выполняемых функциях рибосомных субъединиц представлены в таблице.

Функция перемещения рибосомы по и-РНК осуществляется совместно двумя субъединицами.

Что мы узнали?

Мы выяснили какую функцию выполняют в клетке рибосомы. Они являются основной частью белоксинтезирующей системы. На рибосомах происходит сборка белковых молекул. Белки, входящие в состав самих рибосом, регулируют и катализируют процессы белкового синтеза.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 96.

А) В гладкой эндоплазматической сети.

Б) В гранулярной эндоплазматической сети.

В) В комплексе Гольджи.

Г) В ядрышковых организаторах.*

Д) В цитоплазме.

Периоды интерфазы... основные процессы...

Участки хромосом … это…

В процессах …. непосредственное участие принимают…

Термин … это…

Ферментами-маркерами... являются...

Белки... входят в состав...

Если в клетке много органелл... то это может свидетельствовать о ее...

Что означает термин



Белки... входят в состав...

Что означает термин..

Процессы … происходят …

Если дифференцированная специализированная клетка имеет... то эта клетка вышла из цикла...

Расположите стадии митоза в хронологической последовательности

1. профаза

2. метафаза

3. анафаза

4. телофаза

5. зиготена

Расположите процессы, протекающие при распаде клетки в правильной последовательности

1. кариорексис

2. кариопикноз

3. кариолизис

Ситуационные задачи

Задача 1. У мужчины 42 лет для уточнения диагноза проведена биопсия печени. При исследовании биопсийного материала было обнаружено, что его клетки имеют повышенную базофилию цитоплазмы. Это свидетельствует о том, что в клетках происходит:



Активный синтез белков*

Задача 2. Клетку лабораторного животного поддали избыточному рентгеновскому излучению. В результате образовались белковые фрагменты в цитоплазме. Какая органелла клетки возьмет участие в их утилизации?

Лизосомы*

Задача 3. С помощью шпателя сделано соскоб из слизистой оболочки рта человека. В неразрушенных эпителиальных клетках окрашенного мазка хорошо видно овальные ядра, неодинаковые по размерам. Каким путем происходило деление этих клеток?

Задача 4. В кабинет дерматовенеролога обратился больной. Из гнойного мазка уретры этого пациента врач приготовил мазки, окрасил их за Граммом. Во время микроскопии обнаружил большое количество грамнегативных диплококков бобовидной формы, которые располагались в цитоплазме лейкоцитов. Результаты какого процесса наблюдаются в препарате?

Незавершенного фагоцитоза*

Задача 5. У человека диагностировано галактоземию – болезнь накопления. В результате нарушения какой клеточной структуры возникла эта болезнь?

Задача 6. При микроскопическом исследовании ткани печени было обнаружено, что некоторые клетки распались на небольшие фрагменты с отдельными органеллами и остатками ядра, окруженные мембраной. Воспалительная реакция отсутствует. Для какого патологического процесса характерны эти изменения?

Апоптоз *

Задача 7. За пределами цитолеммы и в цитоплазме клетки находятся ионы, концентрация которых в клетке больше, чем снаружи. Возможен ли транспорт этих ионов в клетку? Если это возможно, то каков механизм?

Возможен путём активного транспорта.*

Задача 8. При исследовании кариотипа человека и гориллы обнаружили два типа клеток. Одни из них имели 46 хромосом, а другие - 48. Какие из этих клеток принадлежат человеку?

Клетки с 46 хромосомами.*

Задача 9. Необходимо описать структуру в клетке, размеры которой меньше 0,1 мкм, но больше 100 нм. Какой метод микроскопии позволит это сделать?

Электронная микроскопия.*

Задача 10. На свободной поверхности клеток выявлена высокая активность фермента щелочной фосфатазы. Как будет выглядеть поверхность этих клеток под электронным микроскопом?

В виде микроворсинок.*

Задача 11. Женщине 67 лет удалена опухоль матки. При гистологическом исследовании в клетках опухоли обнаружены многополюсные митозы – картины расхождения не к двум, а к нескольким полюсам. С нарушением состояния каких органелл наиболее достоверное появление многополюсных митозов?

Центриолей*

Задача 12. В крови больного обнаружен низкий уровень альбуминов и фибриногена. Снижение активности каких органелл гепатоцитов печени наиболее достоверно обусловливает это явление?

Гранулярной эндоплазматической сети*

Задача 13. В питательную среду с клетками, которые культивируются, внесен раствор тимина (Т) с радиоактивной меткой. В каких структурах клеток обнаружат обозначенный тимин во время радиоавтографии?

Задача 14. Под электронным микроскопом в клетках обнаружена деструкция митохондрий. Какие процессы в клетках будут нарушены?

Энергетические процессы.*

Задача 15. Ядро клетки обработали препаратами, разрушающими белки - гистоны. Какая структура пострадает в первую очередь?

Изменится структура хроматина, а следовательно структура и функция хромосом.*

Задача 16. На электрокардиограмме мужчины 23 лет есть признаки нарушения проведения возбуждения от предсердий к желудочкам (что связано с нарушением обмена ионов между клетками), обусловленные ревматическим миокардитом. Изменением каких структур контактирующих поверхностей клеток сердца наиболее достоверно объясняются эти явления?

Щелевидных контактов*

Задача 17. В культуре тканей ядерным облучением повреждены ядрышки ядер. Возобновление каких органелл в цитоплазме клеток становится проблематичным?

Задача 18. Во время деления клетки исследователю удалось наблюдать фазу, при которой отсутствовали мембрана ядра и ядрышко, а центриоли находились на полюсах клетки. Хромосомы имели вид клубка нитей, которые свободно расположены в цитоплазме. Для какой фазы это характерно?

Вопросы для самоподготовки .

  1. Вклад Пуркинье, Шванна, Вирхова и др. в учение о клетке.
  2. Способы репродукции клеток.
  3. Эндорепродукция.
  4. Переваривающий аппарат клеток. Определение, классификация.
  5. Комплекс Гольджи, строение и функции.
  6. Клетка как структурно-функциональная единица ткани.
  7. Объекты исследования гистологии.
  8. Методы, используемые в гистологии и эмбриологии.
  9. Этапы приготовления гистологических препаратов.
  10. Общая характеристика основных гистологических элементов: клеточных (клетка, симпласт, синцитий), и неклеточных (комплементы межклеточного вещества).
  11. Жизненный цикл клетки: этапы, морфофункциональная характеристика, особенности у различных типов клеток.
  12. Основные положения клеточной теории и её значение в развитии медицины.
  13. Включения цитоплазмы: понятие, классификация, химическая и морфо-функциональная характеристика
  14. Ядро, значение в жизнедеятельности клеток.
  15. Основные компоненты ядра, их структурно-функциональная характеристика. Ядерно-цитоплазматические отношения как показатель функционального состояния клеток
  16. Способы репродукции клеток.
  17. Определение и биологическая сущность митоза.
  18. Эндорепродукция.
  19. Ядро: функции, строение, химический состав.
  20. Хроматин как форма существования хромосом в интерфазном ядре. Структурная организация хроматина. Понятие о конденсированном и деконденсированном хроматине, степень их участия в синтетических процессах.
  21. Общие и специфические органеллы клетки.
  22. Митохондрии, строение, основной ферментативный состав, функции. Особенности строения митохондрий в клетках с различным уровнем биоэнергетики и синтеза.
  23. Ядро: функции, строение, химический состав. Взаимодействие структур ядра и цитоплазмы в процессе синтеза белка в клетке. Основные этапы синтеза белка
  24. Органеллы цитоплазмы: понятие и классификация.
  25. Структурная, химическая и функциональная характеристика органелл, составляющих цитоскелет клеток.
  26. Строение и значение центриолей, ресничек и жгутиков.
  27. Цитоплазма клетки. Общая структурно-химическая характеристика. Гиалоплазма, органеллы, включения. Классификация органелл. Структура и функция гранулярной эндоплазматической сети.
  28. Общая характеристика межклеточных контактов. Классификация и строение контактов. Характеристика контактов разных типов.
  29. Эндоплазматическая сеть (ЭПС). Разновидности ЭПС, их строение и функции.
  30. Общий план строения эукариотических клеток.
  31. Биологические мембраны клеток, строение, химический состав и основные функции.
  32. Плазмолемма: строение, химический состав, функции. Характеристика надмембранного и субмембранного слоя клеточной оболочки.

Критерии оценки

Оценка «Отлично» ставиться студенту, если даны правильные ответы не менее чем на 90% вопросов тестирования, ошибки в решении задач отсутствуют.

Оценка «Хорошо» ставиться студенту, если даны правильные ответы не менее чем на 80% вопросов тестирования, ошибки в решении задач отсутствуют.

Оценка «Удовливорительно» ставиться студенту, если даны правильные ответы не менее чем на 70% вопросов тестирования, есть незначительные неточности при решении задач.

Оценка «Неудовлетврительно» ставиться студенту, если даны правильные ответы менее чем на 70% вопросов тестирования, есть грубые ошибки при решении задач или их решение отсутствует.

Педагогический работник ____________________ О.Б. Жданова

(подпись)

«_______» __________________________ 20____ г.

Федеральное государственное образовательное учреждение

высшего образования

«Кировский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

(ФГБОУ ВО Кировский ГМУ Минздрава России)