Основные понятия теории принятия решений автор. Теория принятия решений. Основные понятия процесса принятия управленческого решения

2.5. Общие сведения о теории принятия решений

Ускоряющиеся темпы развития цивилизации, процессов обмена информацией, а также появление новых технологий управления, основанных на гибком взаимодействии с внешней средой, – те факторы, которые привели к возникновению новых трудностей в принятии деловых решений. Наряду с существовавшими критериями принятия решений появились новые: влияние на окружающую среду, здоровье нации, завоевание лидерского положения на внутреннем и конкуренция на мировом рынках, укрупнение и централизация, корпоративное устройство организации производств и многие другие.

Спрос рождает предложение – ответом на возросшие потребности в применимых на практике научных методах стало возникновение новой научной дисциплины – теории принятия решений.

Одна из задач теории принятия решений – изучение того, каким образом человек или группа людей принимает решения. Другая задача – разработка специальных методов принятия решений, помогающих выявлять проблемы, формулировать цели и критерии их достижения, генерировать альтернативы, оценивать их и обосновывать решения. Исходя из этих задач, теорию принятия решений можно разделить на две части, не связанные между собой функционально: дескриптивную (описательная функция) и прескриптивную (предписывающая функция).

«Дескриптивная составляющая описывает реальное поведение и мышление людей в процессе принятия решений и называется психологической теорией решений. Прескриптивная составляющая, наоборот, предписывает людям, как им следует принимать решения, и называется нормативной теорией решений».

Психологическая теория принятия решений. Система утверждений, которая раскрывает внутреннее содержание деятельности и поведения людей в процессе принятия решений, называется психологической теорией принятия решений.

Психологическая теория решений состоит из системы утверждений.

1. Представление о ситуации принятия решений. Одну и ту же ситуацию люди воспринимают и представляют по-разному. Представление, возникающее в сознании конкретного человека, – это субъективная модель ситуации. Субъективность означает, что реальные факты, преломляясь через призму сознания, искажаются, часть фактов теряется или не принимается во внимание.

2. Оценка последствий принимаемых решений. Оценка последствий принимаемых решений также субъективна, как правило, она отражает личные предпочтения ЛПР. Субъективная оценка полезности альтернатив оказывает решающее воздействие на процесс принятия решений и определяет окончательный выбор.

3. Оценка вероятностей наступления событий и их влияния на реализацию принятого решения. При оценке вероятностей наступления различных событий люди используют эвристические правила и подвержены влиянию психологических «ловушек». Психологи, например, обнаружили, что люди часто переоценивают вероятности наступления более понятных и желаемых для них событий, хотя реально эти события маловероятны и влияние их незначительно.

4. Правила и стратегии, используемые людьми, для принятия решений в различных ситуациях. При выборе альтернативы люди также пользуются разнообразными эвристиками, не имеющими строгого обоснования. Например, часто применяется адаптивная модель, когда каждая альтернатива оценивается в виде суммы полезностей различных исходов, умноженных на их вес, т. е. важность того или иного результата.

5. Влияние различных факторов, управляющих процессом принятия решения. К таким факторам могут быть отнесены:

Внешняя среда;

Личностные качества людей;

Обеспеченность ресурсами.

Например, чем сильнее у человека выражены потребность в успехе и стремление к превосходству, тем больше он склонен к риску. В психологии также известен эффект «позитивного сдвига риска», когда коллективное принятие решений приводит к выбору более рискованных альтернатив, чем индивидуальное. Это происходит из-за распределения ответственности между членами группы лиц, принимающих решение, «размытости» ответственности каждого за последствия рискованного решения.

Психологическая теория решений изучает, как люди принимают решения и какие психические явления, парадоксы и «ловушки» сопровождают этот процесс. Психологическая теория выполняет две основные функции – функцию объяснения поведения человека и функцию предвидения его поведения в процессах принятия решений.

Нормативная теория решений – это система методов, обеспечивающих поддержку принятия решений. В настоящее время разработано большое число разнообразных методов и процедур, «организующих» мышление человека и предписывающих ему, как следует себя вести в процессе принятия решений, и помогающих людям разобраться в:

Сложных ситуациях;

Своих предпочтениях;

Целях принятия УР;

Ограничениях на УР;

Оценке альтернатив;

Окончательном выборе решения.

В основе нормативной теории решений лежат две концепции: концепция максимизации полезности и концепция ограниченной рациональности.

Концепция максимизации полезности. Суть данной концепции заключена в рассмотрении «экономического» человека как субъекта, принимающего решения, наделенного рациональным мышлением и осуществляющего выбор оптимального решения. Оптимальным считается решение, обладающее максимальной полезностью. Полезность той или иной альтернативы определяется в соответствии с функцией полезности, отражающей индивидуальную систему предпочтений лица, принимающего решение. Сравнивая альтернативы, ЛПР явно или неявно сопоставляет их полезности по определенным критериям, составляющим функцию полезности.

В теории принятия решений разработаны специальные методы построения и максимизации функции полезности, которые действительно помогают определить наилучшее решение. Применение этих методов на практике связано с большими затратами времени и поэтому не всегда возможно и целесообразно.

Концепция ограниченной рациональности. На практике люди редко ведут себя рационально. В большинстве случаев они, как правило, ограничиваются удовлетворительными решениями, которые, хотя и уступают оптимальным по оценке, вполне приемлемы с точки зрения достижения поставленных целей.

Руководители ограничиваются удовлетворительными решениями по следующим причинам:

1) в силу ограниченности времени, опыта и знаний ЛПР принимает во внимание лишь ограниченное число альтернатив;

2) из-за ограниченности времени часть альтернатив не принимается к рассмотрению и оценке как признанные неудовлетворительными при первом рассмотрении;

3) предвидение всех возможных исходов требует многокритериальной оценки, сложных математических расчетов и разработки сценариев, что связано с затратами времени и привлечением к процессу разработки специалистов (часто руководитель считает, что принятие решений – это исключительно его прерогатива и что привлечение специалистов будет означать признание собственной некомпетентности);

4) руководителю часто приходится принимать решения в условиях неопределенности (недостаточно достоверной информации об организационных проблемах; латентном характере действительных проблем, являющихся причинами тех, которые решаются; незадействованном потенциале организации, ее сильных сторонах, возможностях, которые находятся во внешней среде и могут быть использованы для решения задач организации; угрозах внешней среды);

5) оценка рисков сопряжена с применением специальных методов теории вероятностей, что накладывает ограничения на их использование;

6) принятие решений происходит постоянно, в режиме «хронической нехватки времени», поэтому возможны ошибки;

7) отсутствие стратегии или ее четкой формулировки, а также детализации до политик, проектов, программ и конкретных мероприятий приводит к «размытости целей» организации. Неясно, «во имя чего» принимается решение, что должно быть результатом не только конкретной операции, но и функции конкретной подсистемы и деятельности организации в целом.

Все перечисленные причины обусловлены психическими и организационными факторами: ограниченными возможностями человека по переработке информации; искажением информации в процессе передачи ее ЛПР; наличием скрытых организационных процессов, организационных патологий и т. п.

Данный текст является ознакомительным фрагментом. Из книги Теория организации: конспект лекций автора Тюрина Анна

ЛЕКЦИЯ № 1. Общие понятия теории организации 1. Сущность предприятия, его черты и функции Предприятие – это самостоятельный хозяйственный субъект, созданный предпринимателем или группой предпринимателей для производства рыночных товаров и услуг с целью получения

Из книги Управление персоналом для менеджеров: учебное пособие автора Спивак Владимир Александрович

Скорость принятия решений Время, отводимое на принятие решения, может также сильно повлиять на процесс отбора. Предположим, например, что начальник производства приходит в офис к менеджеру по персоналу и говорит: «Два моих инспектора по контролю качества только что

Из книги Управленческие решения автора Лапыгин Юрий Николаевич

3.1. Сущность принятия решений Сущность разработки и реализации управленческих решений – многоаспектность данных процессов.Экономическая сущность УР проявляется в том, что для его разработки и реализации требуются финансовые, материальные и другие ресурсы. Поэтому

Из книги Менеджмент: учебный курс автора Маховикова Галина Афанасьевна

3.5. Проблемы принятия решений Характерная черта любой ситуации, связанной с принятием решений, – наличие большого числа вариантов действий, из которых нужно выбрать наилучший.Одна из проблем РУР представляет собой то, что цели (целям) необходимо придать количественные и

Из книги Бессознательный брендинг. Использование в маркетинге новейших достижений нейробиологии автора Прает Дуглас Ван

Тема 7. ПОЛОЖЕНИЯ ПСИХОЛОГИЧЕСКОЙ ТЕОРИИ ПРИНЯТИЯ РЕШЕНИЙ Содержание темыКогнитивная психология и разработка решений. Три уровня памяти человека. Нейросетевая модель работы мозга.Мышление: интуитивное, наглядно-действенное и наглядно-образное.Теория поиска

Из книги Управляя изменениями [Как эффективно управлять изменениями в обществе, бизнесе и личной жизни] автора Адизес Ицхак Калдерон

5.4. Методология принятия управленческих решений Эффективность управления зависит от комплексного применения многих факторов, и не в последнюю очередь – от процедуры принимаемых решений и их практического воплощения в жизнь. Чтобы управленческое решение было

Из книги Идеальный руководитель. Почему им нельзя стать и что из этого следует автора Адизес Ицхак Калдерон

Из книги Развитие лидеров. Как понять свой стиль управления и эффективно общаться с носителями иных стилей автора Адизес Ицхак Калдерон

Из книги Как преодолеть кризисы менеджмента. Диагностика и решение управленческих проблем автора Адизес Ицхак Калдерон

Из книги Доброе слово и револьвер менеджера автора Мухортин Константин

Из книги Семь шагов для создания эффективного ИТ-подразделения автора Гредников Сергей

Из книги Эффективный руководитель автора Друкер Питер Фердинанд

Инструменты для принятия решений Чтобы правильно принимать решения, каждому управленцу необходимо уметь пользоваться аналитическими инструментами. Предложу некоторые из них:SWOT-анализ (подробно см. в разделе о функции «Анализ»). Этот инструмент поможет беспристрастно,

Из книги МВА за 10 дней. Самое важное из программ ведущих бизнес-школ мира автора Силбигер Стивен

1. Эффективность подразделения ИТ: общие сведения Каждый руководитель, принимая решение, всегда руководствуется соотношением параметров: время, деньги, качество. На рисунке 1 наглядно отображены два ситуационных примера: с одном случае (точка А) – гармония всех трех

Из книги Как управляют лучшие автора Трейси Брайан

Из книги автора

Из книги автора

Два метода принятия решений Чтобы научиться лучше принимать решения, можно воспользоваться двумя методами.1. Метод бухгалтерского баланса, который часто называют методом Бенджамина Франклина. Возьмите чистый лист бумаги и разделите его пополам вертикальной чертой.

2.4. Теория принятия решений

2.4.2. Основные понятия теории принятия решений

Принятие решений в процессе управления сложными социально-экономическими системами связано с необходимостью восприятия и переработки большого объема разнородной информации. Ограниченные возможности человека по восприятию и переработке информации приводят к неоптимальности принимаемых решений. Усиление интеллектуальных возможностей человека достигается на основе использования научного подхода, который предполагает наличие теории принятия решений (ТПР); совокупности практических рекомендаций, вытекающих из теории и опыта ее применения; комплексного использования всех средств для принятия решения: логического мышления и интуиции человека, математических методов и вычислительной техники.

Мыслительная деятельность человека в процессе принятия управленческих решений может быть усилена за счет рационального применения формальных (логических, математических) методов и технических средств. Различного рода расчеты, поиск и предварительную обработку информации, уменьшение количества альтернативных вариантов решений при оценке их предпочтений по многим показателям можно эффективно провести с использованием формальных методов и технических средств. Правильное комплексное применение всех средств существенно повышает эффективность процесса принятия решений. ТПР дает практические рекомендации по рациональному комплексированию всех средств на различных этапах и в определенных процедурах процесса принятия решений.

ТПР предписывает нормы поведения ЛПР, которым он должен следовать, чтобы не вступить в противоречие с собственными суждениями и предпочтениями. С ростом сложности задачи уменьшается способность человека к неформальной обработке всей информации в соответствии с его собственными суждениями и предпочтениями. Значение ТПР для выработки и принятия эффективных УР особенно возрастает в современных условиях развития общества и экономических отношений, которые характеризуются увеличением объемов информации, которые ЛПР должен учитывать и перерабатывать, а также увеличением степени неопределенности текущего состояния и тенденций развития окружающей среды организаций.

Теория принятия решений (ТПР) – научная дисциплина, которая изучает и разрабатывает концепции, принципы, аксиомы, модели и методы разработки и принятия УР с целью совершенствование процесса принятия решений.

Задача принятия решений направлена на определение наилучшего (оптимального) способа действий для достижения поставленных целей. Под целью понимается идеальное представление желаемого состояния или результата деятельности. Если фактическое состояние не соответствует желаемому, то имеет место проблема . Выработка плана целенаправленных (направленных на достижение цели) действий по устранению проблемы составляет сущность задачи принятия решений . Проблема всегда связана с определенными условиями, в которых существует организация или ее элемент, и которые обобщенно называют ситуацией . Совокупность проблемы и ситуации образует проблемную ситуацию . Выявление и описание проблемной ситуации дает исходную информацию для постановки задачи ПР.

Субъектом всякого решения является лицо, принимающее решение (ЛПР). Понятие ЛПР является собирательным. Это может быть одно лицо – индивидуальное ЛПР или группа лиц, вырабатывающих коллективное решение, – групповое ЛПР . Для помощи ЛПР в сборе и анализе информации и формировании решений привлекаются эксперты – специалисты по решаемой проблеме. Понятие эксперта в ТПР трактуется в широком смысле и включает сотрудников аппарата управления, подготавливающих решение, ученых и практиков специалистов.

В процессе принятия решений формируются альтернативные (взаимоисключающие) варианты решений и оценивается их предпочтительность. Альтернатива одно из возможных взаимоисключающих решений. Альтернативное множество совокупность нескольких взаимоисключающих возможностей, способов действий. Способ действий совокупность действий, приводящих к возможным различным исходам (последствиям).

Предпочтение это интегральная оценка качества решений, основанная на объективном анализе (знании, опыте, проведении расчетов и экспериментов) и субъективном понимании полезности (ценность, степень целесообразности), эффективности решений. Для осуществления выбора наилучшего решения индивидуальное ЛПР определяет критерий выбора, т.е.стандарт, по которому предстоит оценивать альтернативные варианты выбора. Выбор выделение элемента из множества. Групповые ЛПР производят выбор на основе принципа согласования .

Конечным результатом задачи принятия решений является решение , которое представляет собой предписание к действию. С содержательной точки зрения решением может быть способ действия, план работы, вариант проекта и т.п. Решение называется допустимым , если оно удовлетворяет ограничениям: ресурсным, правовым, морально-этическим. Допустимое решение называется оптимальным (наилучшим), если оно обеспечивает экстремум (максимум или минимум) критерия выбора при индивидуальном ЛПР или удовлетворяет принципу согласования при групповом ЛПР.

Обобщенной характеристикой решения является его эффективность . Эта характеристика включает эффект решения, определяющий степень достижения целей, отнесенный к затратам на их достижение. Решение, тем эффективнее, чем больше степень достижения целей и меньше затраты на их реализацию.

Принятие решений происходит во времени, поэтому вводится понятие процесса принятия решений . Этот процесс состоит из последовательности этапов и процедур и направлен на устранение проблемной ситуации.

В основе ТПР лежит предположение о том, что выбор альтернатив должен определяться двумя факторами:

1) представлениями ЛПР, о вероятностях различных возможных исходов (последствий), которые могут иметь место при выборе того или иного варианта решения;

2) предпочтениями , отдаваемыми различным возможным исходам.

Субъективные вероятности

ЛПР каждому возможному событию, исходу X может поставить в соответствие число Р(X) из интервала , которое будем в дальнейшем называть субъективной вероятностью . Субъективная вероятность отражает степень уверенности ЛПР в том, что событие В наступит, и в ее основе лежит готовность данного ЛПР действовать в соответствии с этой уверенностью. ЛПР может формировать свои субъективные вероятности для возможных событий на основе многочисленных соображений. Сюда входят знания о физических явлениях, эмпирические данные, результаты моделирования взаимосвязи различных факторов и экспертные суждения.

Субъективная вероятность, основанная на физических явлениях. Внекоторых ситуациях можно предположить, что все возможные исходы некоторого эксперимента (случайного события) имеют равные шансы на появление в результате эксперимента. Это означает, что если существует К возможных исходов, то субъективная вероятность каждого из них равна 1/К. Основываясь на таком предположении, обычно приписывают вероятность 1/2 выпадению герба на правильной монете и вероятность 1/6 выпадению шестерки на игральной кости. Вероятности, которые можно проверить исчерпывающими экспериментами, часто называют объективными вероятностями . Большинство людей согласны с такими вероятностями. Если некоторый ЛПР принимает их как руководство к действию, то объективные вероятности, по определению, являются также и субъективными вероятностями.

Субъективная вероятность, основанная на имеющихся данных. Если имеются данные о возможности наступления событий, интересующих ЛПР, то их можно использовать для формирования суждений о вероятностях событий. Пусть X 1,…, Xk - полный набор взаимоисключающих событий. Если в каждом из К испытаний наблюдалось одно из событий: или X 1, или X 2, …, или Xk , причем событие Xm наблюдалось Km раз, то вероятность Xm принимается равной частоте события, т.е. К m /К. Например, если среди последних 10000 договоров о страховании имущества от пожара в 100 случаях пришлось выплачивать страховое возмещение, то субъективно можно положить, что вероятность потери имущества при пожаре равна 0,01.

Субъективная вероятность, основанная на результатах моделирования. Вероятности стохастических событий часто невозможно получить на основе статистических данных из-за их отсутствия или недостатка. Теория исследования операций рекомендует в этом случае построить аналитическую или имитационную модель явления, при помощи которой можно получить оценки вероятности наступления стохастического события. В аналитических моделях для оценки вероятности стохастического события применяются методы теории вероятностей, а при имитационном моделировании – метод статистических испытаний (метод Монте-Карло). Суть метода Монте-Карло состоит в использовании выборки случайных чисел (сгенерированных компьютерной программой) для получения искомых оценок.

Оценка полезности

В ТПР предполагается, что существует единственная мера эффективности, относительно которой необходимо оценить предпочтения ЛПР. Мера – нормированная числовая функция множества. Нужно оценить полезность каждого возможного исхода … При большом числе возможных исходов необходимо оценить функцию полезности . Существуют специальные процедуры выявления функции полезности у ЛПР, но они дополняются искусством исследователя, его способностями установить контакт с ЛПР. Для оценки функции полезности исследователь должен доказать ЛПР важность таких оценок, заручиться его поддержкой и сделать процедуру оценивания удобной.

На рис.2.13 приведены графики восьми типовых функций предпочтений. На каждом графике по горизонтальной оси отложен объективно измеряемый параметр у. В качестве такого параметра может быть, например, выигрыш при у > 0 или проигрыш при у < 0, выраженные в денежной оценке. По вертикальной оси на всех графиках дано значение функции предпочтения f (у), характеризующей субъективное понимание ЛПР ценности (полезности) значений объективно измеряемого параметра. При f(y)>0 имеет место полезность, а при f(y)<0 – неполезность оценки значений объективного параметра у.

Функция предпочтения, изображенная на рис.2.13,а, характеризует «объективное» ЛПР, которое считает, что полезность пропорциональна значению параметра f(у) = у. Следует отметить, что «объективное», ЛПР является абстракцией, поскольку реальные ЛПР такой функции предпочтения не имеют, и она к используется для лучшего понимания сущности других функций предпочтения.

Функция предпочтения на рис.2.13,6 описывает психологию мышления «азартного» ЛПР; она с увеличением значения объективного выигрыша приписывает ему значительно большую ценность, т.е. преувеличивает полезность выигрыша. При отрицательных значениях параметра (проигрыш) это ЛПР приуменьшает неполезность.

На рис. 2.13,в представлена функция предпочтения «осторожного» ЛПР. Это ЛПР особое внимание уделяет предупреждению больших потерь и недооценивает полезность получения выигрыша.

На рис.2.13,г изображен график функции предпочтения, описывающий поведение ЛПР, склонного преувеличивать полезность при больших значениях выигрыша и неполезность при больших значениях проигрыша.

На рис.2.13,д представлена функция предпочтения ЛПР, отношение которого носит осторожный характер как к большим выигрышам, так и к большим проигрышам.

На рис.2.13,е функция предпочтения описывает «нормальное» ЛПР. При небольших выигрышах и проигрышах это ЛПР ведет себя как объективное; при несколько больших по абсолютной величине значениях параметра проявляется умеренная азартность и осторожность и при совсем больших значениях параметра проявляется осторожность к выигрышу и безразличие к проигрышу.

На рис.2.13,ж приведена разрывная функция предпочтения. С психологической точки зрения эта функция характеризует «выигрывающее» ЛПР, которое, кроме объективного учета выигрыша и проигрыша, еще добавляет постоянную «премию»: положительную за выигрыш и отрицательную за проигрыш.

На рис.2.13,з приведена функция предпочтения, которая считает полезным только выигрыш не менее определенной величины (точка a графике), а далее полезность его постоянна.

Рассмотренные типовые функции предпочтения характеризуют особенности психологии мышления ЛПР. Эти особенности необходимо учитывать при расстановке кадров, установлении взаимоотношений с людьми в процессе совместной деятельности и осуществлении прогноза возможных решений руководителей в различных проблемных ситуациях.

Например, если человек обладает «осторожной» функцией предпочтения, то его нецелесообразно использовать в области деятельности, требующей риска. Для такой деятельности подходящим является человек с «азартной» функцией предпочтения, поскольку при риске можно получить значительно больший выигрыш, чем при осторожном действии.

Рис.2.13. Типы функций предпочтения

2.4.4.Классификация задач принятия решений

В научной литературе предложено несколько классификаций задач принятия решений, основанных на различных системах признаков. Наиболее общими и существенными признаками классификации, встречающимися в большинстве работ, являются:

Ø степень определенности информации;

Ø использование эксперимента для получения информации;

Ø количество лиц, принимающих решения;

Ø значимость и длительность действия решений.

Определенность информации характеризуется полнотой и достоверностью данных, необходимых для принятия решений. По признаку степени определенности информации задачи принятия решений классифицируются на три группы:

1) задачи в условиях определенности (детерминированные задачи);

2) задачи в условиях вероятностной определенности;

3) задачи в условиях неопределенности.

Принятие решений в условиях определенности производится при наличии полной и достоверной информации о проблемной ситуации, целях, ограничениях и последствиях решений. Еще одно определение детерминированных задач – задачи выбора лучшего варианта решения в ситуациях, когда каждый вариант действий приводит к единственному результату.

Для данного класса задач нет необходимости доопределять проблемную ситуацию гипотетическими ситуациями. Цели и ограничения формально определяются в виде целевых функций и неравенств (равенств). Функция предпочтения в случае одной цели совпадает с целевой функцией, а в случае множества целей с некоторой функциональной зависимостью целевых функций. Критерий выбора определяется минимумом или максимумом целевой функции. Наличие перечисленной информации позволяет построить формальную математическую модель задачи принятия решений и алгоритмически найти оптимальное решение.

В настоящее время сформулированы типовые задачи, в основном производственно-экономического характера, для которых разработаны алгоритмы принятия оптимальных решений, основанные на методах математического программирования. К числу таких задач, например, относятся задачи размещения ресурсов, назначения работ, управления запасами, транспортные задачи и т.п. Роль человека в решении задач данного класса сводится к приведению реальной ситуации к типовой задаче математического программирования и утверждению получаемого формально оптимального решения.

Вероятностные задачи (принятие решений в условиях вероятностной определенности) – в ситуациях, когда в результате каждого действия могут быть получены различные результаты, вероятности достижения которых известны или могут быть оценены. Принятие решения в условиях вероятностной определенности базируется на теории статистических решений. В этой теории неполнота и недостоверность информации в реальных задачах учитываются путем рассмотрения случайных событий и процессов. Описание закономерностей поведения случайных объектов осуществляется с помощью вероятностных характеристик. Сами вероятностные характеристики являются уже неслучайными, поэтому с ними можно производить операции по нахождению оптимального решения так же, как с детерминированными характеристиками. Неполнота и недостоверность информации находят свое отражение в вероятностных характеристиках. Общим критерием нахождения оптимального решения в теории статистических решений является средний риск, поэтому часто в литературе задачи данного класса называются задачами принятия решений в условиях риска.

Роль человека в решении задач методами теории статистических решений заключается в постановке задачи, т.е. приведении реальной задачи к типовой математической задаче, утверждении получаемого оптимального решения, а также (при отсутствии статистических данных) в определении субъективных вероятностей событий. Субъективные вероятности представляют собой мнение человека о достоверности случайных событий. Получение оптимального решения в задачах данного класса осуществляется формально без участия человека.

Математические модели, рассматриваемые в задачах принятия решений в условиях определенности, и вероятностной определенности, описывают простейшие ситуации, характерные для функционирования технических и экономических систем. Поэтому задачи данного класса широко применяются для синтеза управления в автоматических системах и имеют ограниченное применение для" управленческих решений в социально-экономической области.

Задачи принятия решений в условиях неопределенности непосредственно связаны с управленческими решениями. Они возникаютв ситуациях, когда неизвестны вероятности реализации вариантов действий из числа рассматриваемых (частичная неопределенность) или вообще неизвестен набор возможных вариантов действий.

Для этих задач характерна большая неполнота и недостоверность информации, многообразие и сложность влияния социальных, экономических, политических и технических факторов. Эти обстоятельства не позволяют, по крайней мере, в настоящее время, построить адекватные математические модели решения задач по определению оптимального решения. Поэтому основную роль в поиске оптимального или приемлемого решения выполняет человек. Формальные методы и технические средства используются человеком в процессе формирования решений в качестве вспомогательных инструментов.

Задача принятия решений в условиях неопределенности является более общей и включает как частный случай принятие решений в условиях определенности и вероятностной определенности. Принятие управленческих решений в организационных системах соответствует условиям неопределенности.

По признаку использования эксперимента для получения информации задачи принятия решений классифицируются на две группы:

1) задачи принятия решений по априорным данным ;

2) задачи принятия решений по апостериорным данным .

Принятие решений по априорным данным характерно для условий определенности и частично для условий вероятностной определенности, поскольку понятие «априорные данные» означает, что используется только известная информация. В условиях неопределенности априорная информация очень мала, поэтому необходимо получение новой информации путем проведения совокупности мероприятий, называемых экспериментом. Результаты эксперимента дают апостериорную информацию.

Для управления проведением эксперимента применяют две стратегии управления.

В одной из них планируется и проводится серия экспериментов, дающая необходимую информацию, на базе которой принимается решение.

В другой – эксперименты проводятся последовательно, причем после каждого эксперимента необходимо принять процедурное решение о продолжении или окончании экспериментов.

Если проведение эксперимента связано со случайными факторами, то последовательная стратегия управления экспериментом является более рациональной, поскольку она позволяет при фиксированной степени определенности информации в среднем уменьшить серию экспериментов. Планирование и управление экспериментом имеют важное значение для оптимизации технологии задач решений в условиях неопределенности.

По признаку количества лиц, принимающих решения , задачи разделяются на индивидуальные и групповые (коллективные). Индивидуальные решения принимаются одним лицом, а группо вые - коллективным органом.

По признаку количества целей различают одноцелевые и много целевые задачи принятия решений. Реальные управленческие решения, как правило, являются многоцелевыми. В этих задачах возникает проблема согласования противоречивых целей при выборе решений. Если цели описаны формализованно, в виде целевых функций, то одноцелевые задачи называют однокритериальными , а многоцелевые – многокритериальными задачами принятия решений.

По признаку содержания задачи принятия решений классифицируются в зависимости от сферы деятельности. Различают экономические, политические, идеологические, технические, военные и другие виды задач.

По признаку действия различают долговременные, среднесрочные и краткосрочные решения. Долговременные решения направлены на достижение генеральных долгосрочных целей. К таким решениям, например, относятся долгосрочные национальные программы в экономической, научно-технической, социальной и других областях деятельности. К среднесрочным решениям относятся, например, планы экономического и социального развития организаций или народного хозяйства в течение 3-5 лет. Краткосрочные решения направлены на устранение текущих проблем.

Классификация задач принятия решений по перечисленным, признакам приводит к различным комбинациям типов задач. Например, некоторая конкретная задача может быть классифицирована как задача принятия решений в условиях неопределенности, по априорным данным, как групповая и многоцелевая. Возможны и другие комбинации. Тип задачи принятия решений определяет выбор метода и технологии разработки решений.

2.4.4. Концепции и принципы ТПР

Концепция (от лат. conceptio - понимание) – это обобщенная система взглядов на рассматриваемый объект или явление, представление о том, как подходить к восприятию и изучению этого объекта (например, концепция мироздания, концепция эволюционного развития).

Принцип (от лат. principium - основополагающая идея) – это то, чем обязательно следует руководствоваться активно действующему субъекту в его теоретической (познавательной, методологической, исследовательской, дидактической и т.п.) или практической деятельности.

Взаимосвязь концепций и принципов, которыми оперирует методология ТПР, удобно отображать некой иерархической структурой, которая показывает их взаимосвязь по горизонтали и вертикали (табл.2.2).

Структура концепций и принципов ТПР

Концепция системы отражает представления о единстве мира, о всеобщей связи и взаимной обусловленности процессов и явлений материального мира. Согласно этой концепции при принятии решения следует постоянно помнить и понимать, что мы никогда не делаем что-то одно. Другими словами, стремясь к достижению цели, мы приводим в действие активные ресурсы: идеи, людей, машины, денежные средства, сырье и материалы; осознанно или непроизвольно создаем и разрываем связи между самыми разнообразными объектами (материальными и идеальными, естественными и искусственными); изменяем понятия и представления и в результате порождаем (иногда сами того не желая) не только желаемый полезный эффект, но и массу неожиданных побочных последствий. В методологическом плане принцип цели напрямую следует из концепции системы, он является поэтому первым принципом, которым должно руководствоваться ЛПР при выработке решения. Это было известно давно. Например, древние греки говорили, что для корабля, который не знает, куда плыть, нет попутного ветра, а известный теоретик научной организации труда Ф.Н. Тейлор в начале XX в. прямо указывал, как нужно организовать процесс управления экономическим предприятием: «Хорошенько поймите, чего вы хотите! А затем – только следите, чтобы это делалось наилучшим и самым дешевым способом».

Суть концепции рациональных решений (от лат. ratio - разум) состоит в том, что решающим аргументом при принятии решения, т.е. при сознательном выборе наилучшего варианта среди других, служит логически непротиворечивая, полная и, лучше всего, количественно подтвержденная система доказательств. Как логическое следствие понимания разумности делается вывод о том, что никогда не следует принимать, но никогда не следует и отвергать вариант решения, если он является единственным при выборе. Нужно обязательно поискать другие варианты, выработать другие альтернативы для решения проблемы, чтобы на основании рационального их сравнения выбрать действительно наиболее предпочтительное разрешение проблемы. Подобная рациональная идея, которой следует руководствоваться при выработке решений, получила название принципа множественности альтернатив.

Суть концепции «наилучшего решения» можно сформулировать так: выбирайте ту альтернативу, которая лучше любой из рассматриваемых. Сразу отметим, что известная концепция оптимальности в математике и исследовании операций есть не что иное, как формальное выражение концепции наилучшего решения, а именно для случая, когда в качестве критерия предпочтительности используется единственный скалярный показатель.

Разумеется, чтобы сравнить альтернативы по правилу «лучше-хуже», «более предпочтительный – менее предпочтительный», нужно использовать измерение, т.е. рациональным следствием концепции наилучшего решения является принцип измерения. Ему соответствует еще один важный постулат управления, который гласит: «Измерено – значит сделано!». Человек в процессе измерений глубже проникает в суть вещей, лучше разбирается в связях между объектами, точнее может представить себе, как на эти объекты или связи воздействовать, чтобы изменить их самих или их свойства в желательном направлении.

2.4.7. Особенности управленческих решений

1. Многоцелевой характер . В большинстве сложных задач приходится стремиться к достижению различных целей. Эти цели почти всегда противоречивы, т.е. продвижение по пути достижения некоторой цели обычно сопровождается ухудшением результатов по другим. Таким образом, ЛПР, неизбежно оказывается перед необходимостью выбора между противоречивыми целями.

2. Воздействие фактора времени .Все важные последствия решения задачи не проявляются сразу, и нельзя указать конкретный момент времени, когда можно наблюдать то или иное последствие. Например, при производстве нового товара иногда приходится рисковать значительными суммами в течение многих лет.

3. Неформализуемые понятия .Неизвестные элементы задачи: ситуации, цели, ограничения, решения, предпочтения – имеют прежде всего содержательный характер и только частично определяются количественными характеристиками. Такие понятия, как престиж, моральный климат, узнаваемость торговой марки, восприятие товара потребителями и т.д. являются некоторыми примерами очень важных неформализуемых понятий, которые существенно усложняют задачу.

4. Неформализуемые процедуры. Определение неизвестных элементов задачи и в конечном счете нахождение наилучшего решения не могут быть формализованы, поскольку не существует методов и алгорит­мов, позволяющих, например, сформулировать цели, критерии, варианты решения.

5. Неопределенность (невозможность однозначного описания объекта по всем его признакам). Как правило, в момент принятия решения точно неизвестны будущие последствия каждой из альтернатив действий. Количество неизвестных элементов задачи существенно больше, чем известных.

6. Субъективные измерения . Элементы задачи описываются характеристиками, часть из которых может быть измерена объективно, а для другой части возможно только субъективное измерение (например, приоритеты целей, предпочтения критериев и вариантов решений и т. п.).

7. Участие экспертов . Эксперты выполняют вспомогательную роль, осуществляя информационную и аналитическую работу по уменьшению неопределенности информации. Они несут, ответственность за свои рекомендации.

8. Возможности получения информации . Получение информации, необходимой для принятия решений может потребовать больших затрат времени и денег, к тому же она может быть не вполне достоверной.

9. Значимость интуиции . Во многих случаях приходится решать задачу принятия решений в условиях неопределенности, обусловленной неполным описанием проблемной ситуации и невозможностью достаточно точной оценки других элементов решения, ожидаемых последствий принятого решения. В этих случаях наряду с логическим мышлением важное значение имеет интуиция ЛПР.

10. Динамические аспекты процесса принятия решений . После того как некоторое решение выработано (выбрана альтернатива), может оказаться, что задача не исчерпана до конца и потребуется принять очередное решение через несколько лет. Сегодняшнее решение может «захлопнуть дверь» перед некоторыми возможными действиями и «распахнуть ее пошире» перед другими. Важно распознать заранее такие динамические аспекты проблемы.

11. Влияние решений на группы . Некоторая выбранная альтернатива может повлиять на большое количество различных групп, например, собственников организации, работников, потребителей, поставщиков, местное сообщество и т.д.

12. Коллективное принятие решений . Часто ответственность за выбор альтернативы несет не отдельное лицо, а целая группа. Фактически для определенного набора задач нельзя четко разграничить функции и ответственность ЛПР по некоторому кругу вопросов.

13.Сравнение альтернатив . Измерение качества решений осуществляется на основе формирования альтернативных вариантов и их сравнительной оценки.

14.Отсутствие единственного оптимального решения . В условиях неопределенности может не существовать единственного оптимального решения. Для ЛПР, имеющих разные предпочтения, решения будут различными.

15.Человеческий фактор . Принимаемые решения могут непосредственно затрагивать интересы ЛПР и системных аналитиков. Поэтому их интересы, мотивы поведения влияют на выбор решения.

16.Уменьшение неопределенности в задаче принятия решений осуществляется последовательными этапами: структуризацией, характеризацией (формирование набора характеристик), оптимизацией.

Описание предпочтений ЛПР в виде функции предпочтения отражает не только объективную, рациональную характеристику решения, но и психологию мышления ЛПР, его понимание полезности решений. Поскольку функция предпочтения используется для выбора решения, то принимаемое решение всегда будет содержать элемент субъективности .

Эксперты в процессе принятия решений уточняют проблемную ситуацию, генерируют гипотетические ситуации, формируют цели и ограничения, предлагают варианты решений и дают оценку их последствий на основе своих предпочтений. Привлечение экспертов к формированию и выбору решений – это использование коллективных знаний и опыта, позволяющих глубже разрабатывать решения и, следовательно, уменьшать вероятность принятия неоптимальных решений.

Основой измерения качества решений с точки зрения степени достижения поставленных целей является сравнительная оценка предпочтительности решений. Сравнительная оценка решений является единственным способом, измерения предпочтительности в условиях отсутствия установленных эталонов, подобных, например, эталонам измерения длины, массы, температуры и т. п. Отсутствие вариантов решений не дает основания ставить вопрос о выборе наилучшего решения. Измерение предпочтительности решений производится экспертами и ЛПР. Экспертные оценки должны отображаться числами с использованием качественных и количественных шкал. Представление результатов экспертизы в числовой форме позволяет производить формальную обработку на ЭВМ с целью получения новой информации, не содержащейся в явном виде в суждениях экспертов. Для оценки решений необходимо сформулировать систему показателей, характеризующих качество этих решений и четко определяющих степень достижения сформулированных целей и затраты ресурсов.

В условиях неполноты информации, а также особенностей психологии мышления ЛПР может не существовать единственного оптимального решения. Недостоверность информации усиливает влияние субъективных факторов на принятие решения.

Характерной особенность принятия решений является наличие последовательного процесса уменьшения неопределенности информации. Структуризация – это выделение основных элементов задачи и установление отношений между ними. Характеризация определение системы характеристик (параметров, показателей, функций), количественно описывающих структуру задачи. Определение вероятностей ситуаций, приоритетов целей, предпочтений решений является примером характеризации в задаче принятия решений. Проведение характеризации приводит к более полному и точному описанию решаемой задачи по сравнению с фазой структуризации и дает исходные данные для последней фазы – оптимизации, на которой вся имеющаяся информация преобразуется в конечную форму – решение. Практическое использование последовательности фаз уменьшения неопределенности в задаче принятия решений повышает эффективность мыслительной деятельности ЛПР.

Принятие решений как связующий процесс.

Уметь управлять – значит уметь выбирать.

Роль и место принятия решений в процессе управления организацией проявляется через основные функции управления, к которым относятся планирование, организация, мотивация, и контроль. Эти функции объединены между собой двумя связующими процессами принятием решений и обменом информации.

Согласно данному подходу процессы управления и принятия решений тесно взаимосвязаны и неотделимы один от другого. При этом необходимо отметить, что принятие решений не является одной из функций управления, а пронизывает весь этот процесс, осуществляясь непрерывно в каждой функции управления. Принятие решений связывает между собой все функции управления, именно поэтому принятия решений рассматривается как важный связующий процесс в рамках широкого процесса управления.

В подтверждение выше сказанного можно привести примеры решений, которые применяются руководителями при осуществлении каждой функции управления.

В процессе планирования принимаются решения:

О миссии и целях организации;

О состоянии внешней среды и ее влияния на другие организации;

О стратегии и тактике достижения поставленных целей;

О бюджете организации;

О выборе инвестиционных проектов;

О стратегии ценообразования.

В процессе организационной деятельности принимаются следующие решения:

О способах организации взаимодействия подразделений и работников организации;

Об организационной структуре;

О пределах и распределении властных полномочий;

О реорганизации фирмы вследствие изменения цели и состояния внешней среды предприятия.

В процессе мотивации:

О нуждах и потребностях подчиненных;

Что необходимо сделать для повышения труда подчиненных;

О методах и приемах мотивации работников.

В процессе контроля могут приниматься следующие решения:

Как и по каким показателям следует оценивать результаты работы;

Как часто следует изменять значение этих показателей;

Какие изменения необходимо провести, с целью улучшения деятельности вашей фирмы.

Приведенные выше примеры показывают, что процесс принятия решений присутствует на любой стадии управленческого процесса.

Теория принятия решений зародилась примерно в середине ХХ века как ответ человеческой практики на возросшие трудности и ответственность при принятии решений.

Главной задачей этой теории была необходимость объяснения того, каким образом человек или группа людей принимают решения, а так же разработать специальные методы и приемы в процессе принятия решений. В связи с этим теорию принятия решений можно разделить на 2 относительно независимые части:



Дестриптивную (предписывающую);

Престриптивную (описывающую).

Дестриптивная составляющая описывает реальное поведение и мышление людей в процессе принятия решений и называется психологической теорией решения.

Престриптивная составляющая описывает, как людям следует вести себя, как принимать решения называется нормативной теорией решения.

ПТР – система утверждений, раскрывающих внутреннее содержание деятельности и поведение людей в процессе принятия решений. Эти утверждения позволяют ответить на следующие вопросы:

Как у людей возникает представление о ситуации принятие решений?

Люди по разному оценивают ситуацию, в которой они оказываются и в которой им приходиться принимать решения. Такое представление является субъективной моделью конкретной ситуации. Практика показывает, что люди склонны упрощать реальную ситуацию, упускать многие моменты, оказывающие порой серьезное влияние на принятие решений.

Как люди оценивают последствия принимаемых решений?

Последствия решений принимаются так же субъективно. Оценка последствий принимаемых решений происходит в соответствии с индивидуальными представлениями о ценностях. В силу этого индивидуальная оценка последствий принимаемых решений может оказать существенное влияние на окончательное принятие решения.

Как люди оценивают вероятности различных факторов, влияющих на принятие решения?

Психологами было установлено, что люди часто переоценивают вероятность наступления более понятных и желаемых для них событий, хотя объективно они могут быть маловероятны.

Какие правила и стратегии используют люди для различных ситуаций принятия решения?

Опыт показывает, что при выборе альтернативы люди используют разнообразные правила, которые не имеют строгого обоснования, но когда-то имели место и могли принести какой-то успех.

Как на людей влияют различные факторы, управляющие процессом принятия решений?

Министерство образования и науки Украины

Запорожская государственная инженерная академия

Теория принятия решений

Учебно-методическое пособие

Ю.О. Матузко

2.1 Постановка задачи

2.2 Критерий Байеса

2.4 Критерий Гермейера

2.5 Критерий Ходжа-Лемана

3.1 Принцип максимина

3.2 Критерий азартного игрока

3.3 Критерий произведений

3.4 Критерий Сэвиджа

3.5 Критерий Гурвица

4.1 Матричные игры

4.3 Матричные игры, разрешимые в смешанных стратегиях

4.3.1 Постановка задачи

4.3.2 Решение задачи симплекс-методом

4.3.3 Решение задачи графическим методом

Раздел 5. Принятие решения в условиях нескольких критериев выбора40

5.1 Постановка задачи, основные понятия

5.2 Линейные свёртки

5.3 Максиминная и лексикографическая свёртки

5.4 Мультипликативные свёртки

5.5 Многокритериальный выбор на языке бинарных отношений

Раздел 6. Принятие корпоративных решений

6.1 Групповая оценка объектов

6.2 Определение коэффициентов компетентности экспертов

Раздел 7. Критерии модульного оценивания знаний

Раздел 8. Задания для самостоятельной работы студентов

8.1 Домашняя контрольная работа

8.2 Вопросы к модульным тестированиям

8.3 Контрольные вопросы к экзамену по дисциплине


Ведение

Дисциплина "Теория принятия решений" читается студентам специальности "Автоматизированное управление технологическими процессами". Такой специалист по окончании учебы должен уметь выдать заказчику законченный программно-алгоритмический продукт, который будет автоматизировать процесс принятия решений в конкретном технологическом процессе, описанном заказчиком. Заказчик в таких случаях может представлять различные отрасли народного хозяйства: он может быть химиком, металлургом, строителем, экономистом, электронщиком и т.п. Главное, чтобы его технологический процесс, в котором нужно принимать решения, был успешно автоматизирован. Предлагаемый курс дает теоретические и практические основы математически обоснованного процесса принятия решений. Рассматриваемые в данном пособии задачи носят чисто абстрактный характер по своему текстовому условию. Главное в них – это количественные и качественные методы решения поставленной проблемы принятия решений, которые могут быть применены к различным отраслям.

В пособии охвачена лишь общая часть дисциплины "Принятие решений". Дело в том, что предмет "Теория принятия решений" читается студентам на протяжении всего двух календарных месяцев. Автор по возможности попытался за столь короткий срок охватить наиболее общие и значимые понятия и методы довольно широкой дисциплины "Принятие решений". Более детальную информацию по дисциплине можно получить из специальной литературы, указанной в пособии.

Данное учебное пособие содержит критерии модульного оценивания знаний, задания домашней контрольной работы, вопросы к модульным тестированиям, а также контрольные вопросы к экзамену по предмету "Теория принятия решений".

Раздел 1. Основные понятия и структура исследования операций

Принимать решения, как отдельному человеку, так и различным группам людей, вплоть до всего человечества приходится практически во всех областях своей деятельности. Единственное, чего мы не выбираем, следуя народной мудрости, так это родителей и Родины. Причем в некоторых областях (военных, медицинских, космических, в атомной энергетике, химической промышленности и др.) возникает потребность принятия достаточно сложных управленческих решений, ошибка в которых может повлечь за собой катастрофические последствия. В силу этого появилась необходимость выделить процесс принятия оптимальных решений в отдельную область науки, которая бы формализовала и систематизировала данный процесс.

Исторически считается, что это произошло в начале 40-х годов ХХ века, когда группа английских ученых математически сформулировала и нашла решение задачи об оптимальном способе доставки на фронт войск, оружия и снаряжения. И сразу же стали интенсивно поступать заказы на решение новых военных задач. Позднее эти исследования были перенесены и на гражданскую сферу и обобщены в отдельную науку – исследование операций .

Исследование операций стала основным научным инструментом при принятии оптимальных решений в самых разнообразных областях человеческой деятельности. Специалиста в этой науке в литературе обычно называют аналитиком (или системным аналитиком, или лицом, принимающим решение (далее ЛПР)).

Дадим некоторые основные определения и обозначим ориентировочное структурное строение исследования операций. Даная структура также отражает этапы, которые должен последовательно пройти ЛПР при принятии решения.

1 этап. Постановка (формулировка) задачи (проблемы).

На этом этапе аналитик должен трансформировать слова заказчика "хочу, чтобы было так" в четко сформулированную задачу. В 99% случаях заказчик не только не может предоставить, но и понятия не имеет о тех данных, которые необходимы аналитику для успешного разрешения проблемы. Оно и понятно – ведь у него нет соответствующего образования. (На самом деле, такое образование заказчику и не нужно, ведь он обратился к грамотному специалисту-аналитику, выпускнику ЗГИА! -) Все необходимое аналитик должен добыть себе сам. Так будет лучше по всем показателям – и по времени и, что немаловажно, по искажению информации (формулировка задачи с чьих-то слов уже априори чревато ошибками). Аналитику необходимо увидеть и изучить проблему "изнутри", для этого ему нужно "внедриться" в сложившуюся ситуацию. Зачастую аналитику надо "внедриться" и поработать на всех ключевых постах в организации заказчика, столкнувшейся с проблемой. На это может уйти от нескольких дней до месяцев.

2 этап. Построение математической модели задачи.

Здесь четко поставленная и сформулированная жизненная проблема формализуется математически.

1) Определяются переменные – переменные величины (их может быть как несколько, так и одна), изменение которых влияет на конечный результат задачи. Наборы различных конкретных значений переменных называются альтернативами (также во многих литературных источниках набор переменных называется планом ).

2) Определяются ограничения , которые накладываются на переменные. Пересечение всех полученных ограничений задает допустимое множество . Набор переменных, которые удовлетворяют всем ограничениям, называется допустимым планом .

3) Определяется критерий, по которому должны отбираться альтернативные решения (планы). Такой критерий называется целевой функцией .

Задача состоит в том, чтобы найти такой набор переменных (выбрать такую альтернативу), чтобы они принадлежали допустимому множеству (т.е. удовлетворяли всем ограничениям задачи) и чтобы целевая функция от этих переменных принимала свое оптимальное значение. Такой набор переменных называется оптимальным планом. Понятно, что оптимальный план должен быть допустимым, поэтому и ищется оптимальный план только среди допустимых планов.

Описанными первыми двумя этапами занимается дисциплина "математическое моделирование ", являющаяся составной частью исследования операций.

3 этап. Решение математической модели задачи.

Решением математических моделей задач занимается дисциплина "математическое программирование ".

В исследовании операций нет единого общего метода решений всех математических моделей. Многолетние исследования позволили обобщить и сгруппировать схожие типы моделей в определенные классы задач. Методы решения данных классов задач составляют отдельные разделы математического программирования, со временем они даже трансформировались в отдельные дисциплины. Дадим краткий обзор некоторых из них.

1) Линейное программирование . В этом классе задач и целевая функция и все ограничения являются линейными функциями. К таким задачам относятся:

задача о плане производства;

задача о диете;

2) Целочисленное программирование . В этих задачах целевая функция и все ограничения также являются линейными. Все переменные должны принимать только целочисленные значения. К таким задачам относятся:

транспортная задача;

задача о назначениях;

3) Динамическое программирование . Применяется, когда исходную задачу можно разбить на меньшие подзадачи и решать их пошагово. К таким задачам относятся:

задача коммивояжера;

задача об управлении запасами;

задача о ранце;

4) Нелинейное программирование . В этом классе задач либо целевая функция, либо все или некоторые ограничения являются нелинейными функциями.

Еще раз акцентируем внимание, что выше приведены лишь некоторые основные разделы математического программирования. Кроме указанных разделов еще существуют теория графов, теория расписаний, сетевое планирование, системы массового обслуживания, теория марковских процессов и др. Каждый раздел математического программирования – это отдельная сформировавшаяся дисциплина, требующая достаточно углубленного теоретического и, особенно, практического изучения.

4 этап. Принятие решений.

На этой стадии аналитик (лицо, принимающее решение) на основе пройденных предыдущих этапов должен принять оптимальное решение. Это и является предметом изучаемого курса "Теория принятия решений ".

Само собой разумеется, что студенты, приступившие к изучению курса "Теория принятия решений" ранее должны были изучить и, что немаловажно, успешно сдать и математическое моделирование, и математическое программирование. Без этого необходимого условия ЛПР вряд ли примет оптимальное решение. Невозможно ведь учиться в пятом классе, до этого не выучив во втором классе таблицы умножения! Равно как и невозможно быть директором роддома, не зная, откуда берутся дети.

Принятие решения – это задача управленческого типа. Под ней понимается задача выбора лицом, принимающим решение (ЛПР) наилучшего способа (исхода) из некоторого конечного множества допустимых вариантов (альтернатив). После принятия решения изучаемая система переходит в новое состояние, на которое будет реагировать окружающая среда. Окружающей средой может быть военная, экономическая, финансовая, техническая или какая-либо другая обстановка. При этом возможны такие случаи:

1) ЛПР знает реакцию окружающей среды на выбор им той или иной альтернативы, т.е. он знает насколько "полезной" или "вредной" для его системы будет реакция окружающей среды на выбор им той или иной альтернативы. Такая ситуация называется задачей принятия решения в условиях определенности . В условиях определенности математическое программирование дает точное решение поставленной задачи. Поэтому необходимости выбирать из нескольких вариантов попросту нет. Таким образом, в условиях определенности "Теория принятия решений" не используется, такими задачами занимается математическое программирование.

2) ЛПР знает вероятность реакции окружающей среды на выбор им той или иной альтернативы. Такая ситуация называется задачей принятия решения в условиях риска.

3) ЛПР ничего не знает о реакции окружающей среды на выбор им той или иной альтернативы. Такая ситуация называется задачей принятия решения в условиях неопределенности .

При этом предполагается, что в перечисленных случаях окружающая среда реагирует на принятое ЛПР решение беспристрастно (как природа), не преследуя никаких своих целей.

4) Однако зачастую бывают ситуации, когда в качестве окружающей среды может выступать, например, конкурирующая фирма, военный противник, конкурент на выборах и т.п. В этом случае такая окружающая среда будет реагировать уже совсем не беспристрастно, а сугубо в своих интересах. Такая ситуация называется задачей принятия решения в условиях противодействия .

Раздел 2. Принятие решения в условиях риска

2.1 Постановка задачи

Рассмотрим следующую ситуацию.

Представьте что вы – глава пенсионного фонда Украины. На счета пенсионного фонда Украины поступают налоговые отчисления по достаточно большой процентной (большей, чем в большинстве развитых странах) ставке. По расчетам этих денег должно хватить на выплату пенсий сегодняшним пенсионерам и на накопление для выплат сегодняшним налогоплательщикам, по достижении ими пенсионного возраста. Ваша непосредственная обязанность, как главы пенсионного фонда обеспечить выполнение этих двух задач. Первая задача – выплата текущих пенсий – это чисто техническое задание. Будем считать, что с ним вы блестяще справитесь.

А что делать с накоплениями? Если эти деньги не трогать и "заморозить", то через несколько лет ввиду инфляции сегодняшний налогоплательщик получит сущие гроши. Естественным выходом (так делают во всем мире) будет эти средства во что-нибудь вложить (инвестировать).

Допустим, что вы, как инвестор, имеете возможность вложить средства пенсионного фонда Украины в один из четырех финансовых институтов: акции кампании г-на Сороса, в депозит BankofAmerica, в облигации госказначейства США и в золото. Эти четыре альтернативы (ваши возможные стратегии) обозначим А1, А2, А3, А4 .

Допустим, окружающая среда (В), в данном случае, ситуация на финансовом рынке на момент завершения депозита может принять одно из пяти определенных состояний. Эти пять состояний обозначим В1, В2, В3, В4, В5 .

Из многолетних статистических данных известны приближенные вероятности (Q) этих состояний: q1, q2, q3, q4, q5 .

Инвестиционная привлекательность проекта вложения средств определяется как конечная рентабельность. Оценка рентабельности считается известной для каждой стратегии инвестора и каждого состояния окружающей среды. Эти данные представлены в матрице, называемой матрицей выигрышей инвестора (игрока А),

где аij – это рентабельность инвестиционного проекта при выборе Аi-той альтернативы и при Вj-том состоянии окружающей среды.

От вас, как главы пенсионного фонда Украины, требуется выбрать наилучший вариант вложения средств налогоплательщиков.

Отметим, что понятие наилучшего исхода в различных условиях трактуется по-разному. Для различных условий принятия решений разработаны различные критерии выбора ЛПР наилучшего исхода. Решим данную задачу с помощью различных критериев.

2.2 Критерий Байеса

Критерий Байеса (принцип математического ожидания) предполагает полное доверие ЛПР известным вероятностям состояний окружающей среды. Следовательно, данная задача – это задача принятия решения в условиях риска.

Показатель эффективности стратегии Аi по критерию Байеса находится по формуле:

гдеm – количество строк матрицы, заданной в условии;

n – количество столбцов матрицы, заданной в условии;

qj – заданные вероятности;

аij – элементы матрицы, заданной в условии.

Заметим, что – это математическое ожидание стратегии Аi . Таким образом, исходную матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести значения математических ожиданий всех стратегий:

0,33 + 0,27 + 0,153 + 0,115 + 0,256 = 0,6 + 1,4 + 0,45 + 1,5 + 1,5 = 5,75

Далее в добавленном столбце нужно найти наибольший элемент (наибольшее математическое ожидание). Строка, в которой он стоит и будет оптимальной стратегией. Необходимо заметить, что наибольших элементов может быть несколько, тогда и оптимальных стратегий соответственно будет несколько.

В нашем случае наибольший элемент 5,95 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. средства фонда вам нужно вложить в третий проект.

Ответ А3 .

2.3 Критерий Лапласа (Бернулли)

Критерий Лапласа (принцип недостаточного основания) предполагает недоверие ЛПР известным вероятностям состояний окружающей среды. Вероятности состояний окружающей среды считаются одинаковыми и равными . Следовательно, данная задача – это задача принятия решения в условиях риска с вероятностями .

Показатель эффективности стратегии Аi по критерию Лапласа находится аналогично критерию Байеса с вероятностями :

Заметим, что нет необходимости вычислять эти математические ожидания. Достаточно просто просуммировать элементы строк матрицы и выбрать из них максимальную сумму:

Для случая оптимизации потерь критерий будет таким:

Таким образом, исходную матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести значения сумм элементов строк всех стратегий:

Далее в добавленном столбце нужно найти наибольший элемент. Строка, в которой он стоит и будет оптимальной стратегией. Необходимо заметить, что наибольших элементов может быть несколько, тогда и оптимальных стратегий соответственно будет несколько.

В нашем случае наибольший элемент в добавленном столбце 34 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А1 , т.е. инвестор должен выбрать для вложения первый проект.

Ответ А1 .

2.4 Критерий Гермейера

Критерий Гермейера применяется для задач принятия решений в условиях риска.

Он применяется в основном для решения задач выбора для оптимизации величины потерь или затрат. Такие задачи довольно часто встречаются в хозяйственной практике. Матрица потерь, задаваемая в условии, будет содержать отрицательные элементы (потери выражаются отрицательными величинами). Если в матрице помимо отрицательных будут и положительные элементы, то исходная матрица потерь преобразуется в матрицу, содержащую только отрицательные элементы по правилу:

где с – некое выбранное ЛПР положительное число.

Следует иметь в виду, что оптимальное решение зависит от выбора с.

Критерий Гермейера применяется и для оптимизации величины прибыли (как в нашей задаче), т.е. для положительных матриц.

В общем случае Гермейер предложил ввести в рассмотрение матрицу с такими элементами:

Таким образом, новую матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести наименьшие значения элементов каждой строки.

В нашем случае наибольший элемент в добавленном столбце 16 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. инвестор должен выбрать для вложения третий проект.

Ответ А3 .

2.5 Критерий Ходжа-Лемана

Критерий Ходжа-Лемана привносит фактор определенной субъективности при принятии решения.

Решение принимается в условиях риска. Однако у ЛПР есть некое недоверие к распределению вероятностей состояний окружающей среды. Поэтому ЛПР вводит некий "коэффициент доверия" l к вероятностям состояний окружающей среды (0 £l£ 1). Чтобы сильно не рисковать, обычно таким коэффициентом берут 0,4. Этот коэффициент ещё называют уровнем оптимизма.

Показатель эффективности стратегии Аi по критерию Ходжа-Лемана находится по формуле:

Z = ,

#Для случая оптимизации потерь критерий будет таким:

Z = #

Таким образом, исходную матрицу необходимо дополнить справа еще тремя столбцами. В первый нужно внести значения математических ожиданий всех стратегий, умноженных на уровень оптимизма l = 0,4. Во второй нужно внести значения наименьших элементов всех строк, умноженных на уровень пессимизма 1 – l = 1 – 0,4 = 0,6 . В третий добавленный столбец внесем сумму значений первых двух добавленных столбцов:

Пример вычислений для первой строки:

0,4  (0,33 + 0,27 + 0,153 + 0,115 + 0,256) = 0,4  5,75 = 2,3

0,6  3 = 1,8

В нашем случае наибольший элемент 4,78 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. инвестор для вложения должен выбрать третий проект.

Ответ А3 .

Раздел 3. Принятие решения в условиях неопределенности

3.1 Принцип максимина

Решим поставленную выше задачу при принятии решения в условиях неопределенности. В таких условиях также нет единой трактовки понятия наилучшего исхода. Поэтому данную задачу тоже будем решать с помощью различных критериев.

Принцип максимина (критерий Вальда) предполагает полное недоверие ЛПР известным вероятностям состояний окружающей среды. Либо же вероятности состояний окружающей среды считаются неизвестными. Следовательно, данная задача – это задача принятия решения в условиях неопределенности.

При неопределенности выбор наилучшей стратегии может основываться на введении различных разумных гипотез о поведении окружающей среды.

Одна из важнейших и основополагающих гипотез такого типа называется гипотезой антагонизма. Она состоит в предположении, что окружающая среда ведет себя наихудшим для ЛПР образом. На этой гипотезе основывается принцип максимина, называемый также принципом гарантированного результата.

Показатель эффективности стратегии Аi по критерию максимина находится по формуле:

Для случая оптимизации потерь критерий превратится в минимаксный и будет таким:


Таким образом, исходную матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести значения минимальных элементов каждой строки.

Затем из элементов добавленного столбца нужно выбрать наибольший. Строка, в которой он стоит и будет оптимальной стратегией.

Выбранные таким образом альтернативы полностью исключают всякий риск! Это означает, что ЛПР не может столкнуться с худшим результатом, чем тот на который он ориентируется. В силу этого принцип максимина является принципом крайнего пессимизма ЛПР (принципом наибольшей осторожности).

Как бы ни вела себя окружающая среда, результат не может оказаться ниже значения критерия максимина! Это свойство делает принцип максимина наиболее применяемым на практике, особенно в случаях, где от конечного результата зависят жизни людей.

Народная интуиция уже веками непроизвольно использует принцип максимина. Это подтверждается такими поговорками как "Семь раз отмерь – один раз отрежь", "Береженого бог бережет", "Лучше синица в руках, чем журавль в небе".

В нашем случае наибольший элемент в добавленном столбце 4 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. инвестор должен выбрать для вложения средств третий проект.

Ответ А3 .

3.2 Критерий азартного игрока

Критерий азартного игрока (принцип максимакса) – это диаметральная противоположность принципу максимина, он тоже применяется при принятии решения в условиях неопределенности. Критерий азартного игрока допустим в случаях очень низкого риска, а также когда выигрыш намного превышает возможные потери.

Показатель эффективности стратегии Аi по критерию азартного игрока находится по формуле:

Для случая оптимизации потерь критерий будет таким:

Таким образом, исходную матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести значения максимальных элементов каждой строки.

Затем из элементов добавленного столбца нужно выбрать наибольший. Строка, в которой он стоит и будет оптимальной стратегией.

В нашем случае наибольший элемент в добавленном столбце 15 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А1, т.е. инвестор должен выбрать для вложения первый проект.

Применение критерия азартного игрока народная мудрость выразила пословицей "Кто не рискует, тот не пьет шампанского".

Ответ А1 .

3.3 Критерий произведений

Критерий произведений тоже применяется при принятии решения в условиях неопределенности. Это более нейтральный критерий по сравнению с принципом максимина и критерием азартного игрока. Критерий произведений производит некое "выравнивание" между большими и малыми значениями аij .

Показатель эффективности стратегии Аi по критерию произведений находится по формуле:

Для случая оптимизации потерь критерий будет таким:

Таким образом, исходную матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести значения произведений всех элементов каждой строки.

Затем из элементов добавленного столбца нужно выбрать наибольший. Строка, в которой он стоит и будет оптимальной стратегией.

В нашем случае наибольший элемент в добавленном столбце 8640 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. инвестор должен выбрать для вложения третий проект.

Ответ А3 .

3.5 Критерий Сэвиджа

Решение опять принимается в условиях неопределенности.

Сэвидж предложил ввести в рассмотрение новую матрицу, элементы которой определяются по формуле:

Построим новую матрицу для нашего примера:

Пример вычислений для первого столбца:

6; r11 = 6 – 3 = 3; r21 = 6 – 4 = 2; r31 = 6 – 6 = 0; r41 = 6 – 3 = 3.

Построенная таким способом матрица называется "матрицей сожалений". И действительно, ведь каждый элемент rijвыражает "сожаление" ЛПР по поводу того, что он не выбрал наилучшего решения по отношению к

Z = =

Для случая оптимизации потерь критерий будет таким:

Z = #

Таким образом, матрицу сожалений необходимо дополнить справа еще одним столбцом, в который нужно внести наибольшие значения элементов каждой строки.

Затем из элементов добавленного столбца нужно выбрать наименьший. Строка, в которой он стоит и будет оптимальной стратегией.

В нашем случае наименьший элемент в добавленном столбце 5 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. инвестор должен выбрать для вложения третий проект.

Ответ А3 .

3.6 Критерий Гурвица

Решение принимается в условиях неопределенности.

Гурвиц предложил критерий, показатель эффективности стратегии Аi при котором находится где-то между точками зрения крайнего оптимизма (критерий азартного игрока) и крайнего пессимизма (критерий максимина). Для этого вводят некий коэффициент l – уровень пессимизма. Выбор уровня пессимизма – процесс субъективный. Чаще всего его выбирают равным либо 0,6 либо 0,5. После этого показатель эффективности стратегии Аi по критерию Гурвица находится по формуле:

Z =

Для случая оптимизации потерь критерий будет таким:

Z = #

Таким образом, исходную матрицу необходимо дополнить справа еще тремя столбцами. В первый нужно внести значения наименьших элементов всех строк, умноженных на уровень пессимизма l = 0,6. Во второй нужно внести значения наибольших элементов всех строк, умноженных на уровень оптимизма 1 – l = 1 – 0,6 = 0,4 . В третий добавленный столбец внесем сумму значений первых двух добавленных столбцов:

Затем из элементов добавленного столбца нужно выбрать наибольший. Строка, в которой он стоит и будет оптимальной стратегией.

В нашем случае наибольший элемент в добавленном столбце 7,2 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А1, т.е. инвестор должен выбрать для вложения средств первый проект.

Ответ А1 .

Раздел 4. Принятие решения в условиях противодействия

4.1 Матричные игры

Раздел "Теории принятия решений" в условиях противодействия называется теорией игр . А так как в основном условия задач в "Теории принятия решений" задаются в виде матриц, то рассматриваемые конфликтные ситуации называются матричными играми . В матричных играх состояниями В1, В2, …, Вnуправляет не беспристрастная природа, а активный противник, преследующий сугубо свои цели.

ЛПР, управляющий своими стратегиями (ходами ) А1, А2, …, Аn, и его противник, управляющий стратегиями (ходами) В1, В2, …, Вnв данной ситуации называются игроками .

Элементы матрицы аij , заданной в условии, называются выигрышами (платежами) игрока А. А вся матрица называется матрицей платежей .

Далее возможны два случая. Если в матричной игре задана одна платежная матрица, то естественно предположить, что выигрыши первого игрока будут являться проигрышами второго игрока. Такая антагонистическая ситуация называется матричной игрой с нулевой суммой . Цель игры для первого игрока (ЛПР) – побольше выиграть, а для второго игрока – поменьше проиграть. Иными словами, цельюигры является определение оптимальной стратегии для каждого игрока – такой стратегии, при которой выигрыш первого игрока будет максимальным, а проигрыш второго игрока будет минимальным.

Однако, такая ситуация бывает не всегда. Зачастую в жизни ваш противник преследует сугубо свои цели, определенные своими выигрышами. В этом случае матричная игра задается двумя платежными матрицами. Или для краткости элементы одной платежной матрицы состоят из двух чисел: (аij, bij). Такая ситуация называется матричной игрой с ненулевой суммой . И для первого и для второго игроков цель игры – побольше выиграть.

Очевидно, что рассмотренная матричная игра предполагает, что каждый игрок делает только по одному ходу. Естественно, что многие конфликтные ситуации предполагают по нескольку ходов каждого игрока. Такие игры рассматриваются пошагово и решаются методами динамического программирования. На каждом отдельном шаге такая игра рассматривается как игра с одним ходом.

Матричные игры для двух игроков с нулевой и ненулевой суммой достаточно хорошо изучены и для них разработана теория оптимального поведения игроков.

Однако в жизненной практике в конфликтных ситуациях зачастую участвуют более чем две стороны. Чем больше игроков – тем больше проблем. Такие игры менее изучены и здесь есть просторное поле для новых фундаментальных научных исследований.

Несмотря на несколько легкомысленное звучание основных терминов, теория игр является строго научной дисциплиной с точными математическими выкладками.

На протяжении всего своего исторического пути развития человечество ежедневно сталкивается с конфликтными ситуациями: политическими, военными, экономическими, социальными и прочими, которые проявляются как в глобальных, так и в малых (вплоть до личных) формах. И если бы Человеку хватило бы ума в конфликтных ситуациях пользоваться не силой, не надеждой на "авось", а математикой, то жизнь наверняка была бы другой. Будем надеяться, что новое поколение, усвоив курс "Исследование операций" -, изменит жизнь к лучшему!

Итак, рассмотрим игру, в которой ЛПР противостоит "думающий" противник.

Возможны такие случаи:

1) Ходы игроками делаются одновременно.

2) Первым ходит игрок 2 – противник, но игрок 1 – ЛПР, не имеет информации о ходе противника.

3) Первым ходит игрок 2 – противник, но игрок 1 – ЛПР, знает о ходе противника.

4) Первым ходит игрок 1, но игрок 2 не имеет информации о ходе противника.

5) Первым ходит игрок 1, но игрок 2 знает о ходе противника.

Очевидно, что случаи 1), 2) и 4) идентичны – никто из игроков не знает о ходе противника ничего.

Рассмотрим случай 3). Так как ЛПР имеет полную информацию о ходе противника, то мы имеем ситуацию принятия решения в условиях полной определенности. Как уже отмечалось выше, такими задачами занимается математическое программирование.

Рассмотрим случай 5). Так как ЛПР ходит первым, то его противник наверняка выберет самую худшую для ЛПР стратегию. Поэтому в такой ситуации ЛПР необходимо принимать решение о своем ходе согласно принципу наибольшей осторожности, т.е. согласно принципу максимина. Это утверждение однозначно, легко математически доказывается и не должно подвергаться сомнению ни в каких жизненных ситуациях.

4.2 Матричные игры, разрешимые в чистых стратегиях

Рассмотрим парную конечную антагонистическую игру. Пусть игрок А располагает mличными стратегиями, которые обозначим А1, а2 ..., Аm. Пусть у игрока В имеется nличных стратегий, обозначим их В1, В2,.., Вn. Говорят, что игра имеет размерность mх n . В результате выбора игроками любой пары стратегий Аiи Вj(i = 1,2 …, m; j = 1,2, …, n).

Однозначно определяется исход игры, т.е. выигрыш аijигрока А (положительный или отрицательный) и проигрыш (-аij) игрока В. Предположим, что значения аijизвестны для любой пары стратегий (Аi Вj). Значения этих выигрышей заданы в платежной матрице

Строки этой таблицы соответствуют стратегиям игрока А, а столбцы – стратегиям игрока В.

С помощью хорошо нам знакомого принципа максимина найдем гарантированный наибольший выигрыш для игрока А:

Найденное число a называется нижней ценой игры.

Стратегия, соответствующая максимину, называется максиминной стратегией – она будет оптимальной стратегией игрока А.

Посмотрим на эту ситуацию с точки зрения второго игрока: ему необходимо уменьшить свои потери. В таком случае критерию максимина превратится в минимаксный и гарантированный наименьший проигрыш для игрока В будет таким:

Найденное число в называется верхней ценой игры

Стратегия, соответствующая минимаксу, называется минимаксной стратегией – она будет оптимальной стратегией игрока В.

Причем, для нижней и верхней цены игры всегда справедливо неравенство:

Если нижняя и верхняя цены игры совпадают, то общее значение верхней и нижней цены игры a = в = n называется чистой ценой игры , или ценой игры . Элемент платежной матрицы, в котором достигается чистая цена игры, называется седловой точкой (по аналогии с поверхностью седла, которая искривляется вверх в одном направлении и вниз – в другом). Найденные оптимальные стратегии игроков А и В в данном случае называются чистыми стратегиями .

Матричная игра с платежной матрицей, имеющей седловую точку, называется игрой, разрешимой в чистых стратегиях. При этом очевидно, что решение игры обладает устойчивостью, т.е. если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии. Оба игрока находятся в "положении равновесия", из которого не выгодно выходить каждому.

Рассмотрим числовой пример.

Дополним исходную матрицу справа еще одним столбцом, а снизу – еще одной строкой. В них будем заносить значения минимальных элементов каждой строки и значения максимальных элементов каждого столбца соответственно:

Найдем нижнюю цену игры. Выигрыш игрока А:

a = = 4он достигается в третьей строке.

Найдем верхнюю цену игры. Выигрыш игрока В:

в = = 4 он достигается во втором столбце.

Как видим, выигрыши игроков совпадают: a = в = n = 4 , значит у матрицы имеется седловая точка. А значит, у данной матричной игры имеется пара оптимальных чистых стратегий А3В2 . Цена игры n = 4.

Но такое бывает далеко не всегда.

4.2 Матричные игры, разрешимые в смешанных стратегиях

4.2.1 Постановка задачи

Если платежная матрица не имеет седловой точки, то . А значит . Такая игра в чистых стратегиях не разрешима. Первый игрок в таком случае будет стремиться увеличить свой выигрыш, а второй – уменьшить свой проигрыш. Поиск такого решения приводит к применению сложной стратегии, состоящей в случайном применении двух и более чистых стратегий с определенными вероятностями:

PA = (p1, p2, …, pm) где pi – это вероятности применения чистых стратегий игроком А;

QB = (q1, q2, …, qn) где qj– это вероятности применения чистых стратегий игроком B;

при этом и .

Такие наборы вероятностей применения чистых стратегий игроками А и В называются смешанными стратегиями .

Заметим, что чистые стратегии – это частный случай смешанных стратегий. Например, чистая стратегия первого игрока – это смешанная стратегия, у которой все вероятности pi = 0 , кроме соответствующего номера kчистой стратегии: pk = 1 .

Основная теорема теории игр (Теорема фон-Неймана) : любая конечная игра двух лиц с нулевой суммой разрешима в смешанных стратегиях.

Как же искать смешанные стратегии? Их можно найти точно – алгебраическим способом (в частности, с помощью симплекс-метода) или графическим способом (для игры размерности 2 х nили m х 2).

Для того чтобы точно найти решение матричной игры в смешанных стратегиях, нужно представить заданную матричную игру в виде задачи линейного программирования и решить её симплекс-методом.

Рассмотрим матричную игру, не разрешимую в чистых стратегиях, в общем виде:

Заметим, что в матричной игре, разрешимой в чистых стратегиях, элементы платежной матрицы могут быть как положительными, так и отрицательными. Для симплекс-метода, которым будем решать игру, не разрешимую в чистых стратегиях, необходимо, чтобы элементы платежной матрицы были неотрицательными. Для этого, если в платежной матрице будут отрицательные элементы, нужно ко всем элементам платежной матрицы прибавить достаточно большое число с. При этом решение задачи не изменится, а цена игры увеличится на с.#

PA = (p1, p2, …, pm)– это оптимальная смешанная стратегия первого игрока. Её применение гарантирует первому игроку выигрыш не меньший, чем цена игры n . Если при этом второй игрок выберет стратегию В1, математически все вышесказанное будет иметь вид:

а11р1 + а21р2 + … + am1pm ≥ n

Таких неравенств будет столько, сколько есть возможных альтернатив у второго игрока, т.е. столбцов платежной матрицы – nштук:

а11р1 + а21р2 + … + am1pm ≥ n

а12р1 + а22р2 + … + am2pm ≥ n

а1nр1 + а2nр2 + … + amnpm ≥ n


Разделив все неравенства на n , получим (в общем виде):

а1j + а2j + … + amj ≥ 1

Обозначим: = xi, . С помощью таких новых переменных вышеуказанные неравенства запишутся в виде:

а11 x1 + а21 x2 + … + am1 xm ≥ 1

а12 x1 + а22 x2 + … + am2 xm ≥ 1

а1n x1 + а2n x2 + … + amn xm ≥ 1

Просуммируем новые переменные:

X1 + x2 + … + xm = + + … + = =

PA = (p1, p2, …, pm)– это оптимальная смешанная стратегия первого игрока. То есть нужно так подобрать (p1, p2, …, pm) , чтобы n была как можно большей. Или же, что то же самое, чтобы была как можно меньшей.

Таким образом, используя новые переменные и учитывая всё вышесказанное, исходную матричную игру можно представить в виде задачи линейного программирования:

найти вектор переменных Х = {x1, x2, … , xm}, такой что:

целевая функция f = min

при множестве ограничений:


гдеА – матрица коэффициентов (платежная матрица), заданная в условии;

Е – единичный вектор

Х – вектор неизвестных переменных, такой что xi = ;

n – это цена игры:n = = ;

рi – это коэффициенты вектора смешанной стратегии первого игрока.

4.2.2 Решение задачи симплекс-методом

Рассмотрим числовой пример.

Пусть имеем игру с платежной матрицей:

Проверим, имеет ли наша матричная игра седловую точку? Для этого используем принцип максимина.

Выигрыш игрока А:a = = 2 он достигается в первой строке.

Выигрыш игрока В:в = = 3 он достигается в четвертом столбце.

Как видим, выигрыши игроков не совпадают, значит у матрицы нет седловой точки. Значит, нужноискать смешанные стратегии.

В данном конкретном случае в множестве ограничений будет четыре неравенства (т.к. в условии задачи четыре столбца). Пересчитывать симплекс- таблицы с четырьмя строками не очень сильно хочется, поэтому удобнее решить двойственную задачу (для коэффициентов вектора смешанной стратегии второго игрока), в которой будет всего две строки (т.к. в условии задачи две строки):

найти вектор двойственных переменных Y = {y1, y2, … yn}, такой что:

целевая функция g = max

при множестве ограничений:АY ≤ Е

Для нашего примера задача линейного программирования будет такой:

найти вектор Y = {y1, y2, y3, y4}, такой что:

целевая функция g = max

при множестве ограничений:

Однако, как показывает многолетняя практика, студенты обладают так называемой "краткосрочной памятью", которая работает только до сдачи необходимого экзамена. Поэтому вспомнить сейчас методику применения симплекс-метода вряд ли кто-то сможет. Для этого нужно сходить в библиотеку, найти специальную литературу и умело ей воспользоваться. Осмелимся заметить, что и этого половина студентов сделать поленится и благополучно завалит данную тему - . #

Поэтому для всеобщего блага приведем здесь методику применения симплекс-метода (пройденного и успешно сданного в математическом программировании) для нашей конкретной задачи.

1 этап – приведение задачи линейного программирования к каноническому виду.

Неравенства во множестве ограничений нужно превратить в равенства с помощью добавления искусственных переменных. Для того чтобы неравенства превратить в равенства, надо в каждое неравенство добавить (или отнять – в зависимости от знака неравенства) искусственную переменную:

Целевая функция при этом будет выглядеть так:g = y1 + y2 + y3 + y4 + 0y5 + 0y6

2 этап – определение начального опорного плана.

В полученном случае начальный опорный план будут составлять искусственные переменные, входящие в ограничения с коэффициентами +1:{ y5 ; y6 }. Новых искусственных переменных для данной задачи вводить не требуется.

3 этап – заполнение исходной симплекс-таблицы.

Исходная симплекс-таблица для нашей двойственной задачи будет иметь вид:

В столбец "текущий базис" ставим переменные, начального опорного плана: { y5 ; y6 }.

В столбец "сi" ставим их коэффициенты в целевой функции.

В столбец "А0" ставим вектор ограничений Е: а10 = 1 ;а20 = 1 .

В самую верхнюю строку таблицы ставим коэффициенты cjпри соответствующих переменных в целевой функции:c1 = 1 ; c2 = 1 ; c3 = 1 ; c4 = 1 ; c5 = 0 ; c6 = 0 .

В столбцы "А1", ...., "А6" ставим соответствующие коэффициенты матрицы ограничений А.


Вычисляем оценки по формулам

D0 = ; .Dj = cj

и ставим их в самую нижнюю строку симплекс-таблицы (строку оценок) :

D0 = = 0 * 1 + 0 * 1 = 0D1 = c1 = 0 * 4 + 0 * 3  1 =  1

D2 = c2 = 0 * 3 + 0 * 7  1 =  1D3 = c3 = 0 * 8 + 0 * 1  1 =  1

D4 = c4 = 0 * 2 + 0 * 3  1 =  1D5 = c5 = 0 * 1 + 0 * 0  0 = 0

D6 = c6 = 0 * 0 + 0 * 1  0 = 0

4 этап – пересчет симплекс-таблицы.

1. Если j ³ 0 для всех j = 1, 2, .... , n , то данный план (в столбце "текущий базис") – оптимален. В нашем случае это условие не выполняется, значит, текущий базис можно улучшить.

2. Если имеются k < 0 и в столбце Аk все элементы aik 0 , то целевая функция не ограничена сверху на допустимом множестве и данная задача не имеет смысла. В нашем случае видим, что целевая функция сверху ограничена.

3. Если имеются j < 0 и в столбцах Аj , соответствующих этим оценкам, существует хотя бы один элемент aik > 0, то возможен переход к новому лучшему плану, связанному с большим значением целевой функции. У нас так и есть.

4. Переменная хk, которую необходимо ввести в базис, для улучшения плана соответствует наименьшей отрицательной оценке j. Столбец Ak, содержащий эту оценку называется ведущим . В нашем случае все оценки одинаковы. Поэтому в качестве ведущего столбца выберем любую оценку, например, третью: k = 3.

5. Ищем min{ ai0 / ai1 } = min{ 1/8 ; 1/1 } = 1/8– этот минимум достигается при i = 1. Значит, r = 1первая строка – ведущая . (на рисунке помечена стрелкой)

Ведущий элементark = a13 = 8 (на рисунке выделен)

6. Заполняем новую симплекс-таблицу.

В столбец "текущий базис" вместо переменной у5 ставим переменную у3 .

В столбец "сi" ставим коэффициент переменной у3 в целевой функции.

Самая верхняя строка таблицы всегда остаётся неизменной.

Пересчитываем ведущую строку по формуле :

После этого пересчитываем остальные строки по формуле

:

вторая строка (i = 2)

D0 = = 1 * + 0 * = D1 = c1 = 1 * + 0 *  1 = 

D2 = c2 = 1 * + 0 *  1 = D3 = c3 = 1 * 1 + 0 * 0  1 = 0

D4 = c4 = 1 * + 0 *  1 = 

D5 = c5 = 1 * + 0 *  0 = D6 = c6 = 1 * 0 + 0 * 1  0 = 0

После этого повторяем 4 этап до тех пор, пока не будет выполнен п.1 (все j ³ 0).

В нашем случае имеются j < 0 и наименьшая среди них 4 . Значит ведущим столбцом на данном шаге будет A4 (пометим его стрелкой).

Ищем min{ ai0 / ai4 } = min{:; :} = min{; } = – этот минимум достигается при i = 2. Значит, r = 2вторая строка – ведущая (на рисунке помечена стрелкой).

Таким образом, в новый текущий базис вместо переменной у6 надо ввести переменную у4 .

Пересчитываем все элементы новой симплекс-таблицы.

Пересчитываем ведущую строку (вторую):

= : =  = = : =  =

= : =  = = 0: = 0

= : = 1 = – : = – = 1: =

Приведенные выше и ниже вычисления представлены в весьма подробном виде. Это сделано из тех соображений, что как опять таки показывает практика, даже не смотря на достаточно хорошее понимание и усвоение теоретического материала, ошибки зачастую возникают именно при выполнении элементарных арифметических операций. Не следует думать, что средняя школа осталась позади, и вы всё можете посчитать в уме. Поэтому всем студентам мы советуем не лениться и подробно расписывать все арифметические действия (особенно с дробями).#

Пересчитываем оставшуюся строку (первую):

= –  = – = =

= –  = – = =

= –  = – = – = –

= 1 – 0  = 1 = – = 0

= –  = + = =

= 0 –  = –

Пересчитываем и заполняем строку оценок:

D0 = = 1 * + 1 * = =

D1 = c1 = 1 * + 1 *  1 =  =

D2 = c2 = 1 * + 1 *  1 =  = =

D3 = c3 = 1 * 1 + 1 * 0  1 = 0

D4 = c4 = 1 * 0 + 1 * 1  1 = 0

D5 = c5 = 1 * + 1 *  0 = =

D6 = – c6 = 1  + 1  – 0 =

Повторяем 4-й этап. При проверке п. 1 видим, что все j ³ 0 . Следовательно, данный план {у3, у4} (в столбце "текущий базис") – оптимален. Больше пересчитывать симплекс-таблицу не нужно.

Решение задачи линейного программирования полностью содержится в последней симплекс-таблице.

Значения переменных находятся в столбце А0 возле соответствующих переменных. В нашем случае, мы видим, что у3 = , у4 = . Переменные у1 и у2 не входят в базис, поэтому их значения будут равны нулю. Таким образом, вектор переменных будет выглядеть так: Y = .

Значение целевой функции – это значение оценки 0 . В нашем случае g = 0 = .

Значения двойственных переменных находятся в строке оценок возле искусственных переменных. В нашем случае это 5 и 6 , то есть х1 = , х2 = . Таким образом, вектор двойственных переменных будет выглядеть так:Х = .

Итак, мы получили решение прямой задачи (которая у нас была двойственной): Y =

и двойственной задачи к данной (которая у нас была прямой):

Значения целевых функций при этом будут совпадать:f = g = .

для первого игрока по формуле рi = :

Р = = ,

для второго игрока по формуле qi = :

Q = = .

Особо "продвинутые" студенты при нахождении решения задачи линейного программирования, чтобы не считать симплекс-метод вручную академическим способом, могут воспользоваться средствами MS Excel. Это гораздо быстрее и удобнее.#

Ответ:

цена игры n = .

4.2.3 Решение задачи графическим методом

Симплекс-методом можно найти решение матричной игры произвольной размерности. Графическим же способом найти решение можно лишь для игры размерности 2 х n.

В ответе мы должны получить смешанные стратегии – два вектора PA = (p1, p2) и QB = (q1, q2, …, qn). Причем, p2 = 1 – p1.

В этом случае выигрыш игрока А, соответствующий j-той чистой стратегии игрока В, будет вычисляться по формуле:

aj* = a1j p1 + a2j p2 = a1j p1 + a2j (1 – p1) = (a1j – a2j) p1 + a2j

Нахождение наименьшего гарантированного выигрыша для игрока А подразумевает минимизацию данного выражения.

По условию наша игра имеет размерность 2 х n. То есть j = . В итоге будем иметь n аналогичных выражений, которые надо минимизировать. После этого согласно принципу максимина из найденных минимумов нужно выбрать наибольший:

a =

Решим графическим способом предыдущий числовой пример.


В данном случае будем иметь четыре уравнения, соответствующие четырем возможным чистым стратегиям игрока В:a1* = р1 + 3

a2* = –4р1 + 7

a4* = –р1 + 3

Чтобы определить наилучший результат из наихудших, построим нижнюю огибающую четырех заданных прямых (на рисунке выделена жирной линией). Эта огибающая представляет минимальный гарантированный выигрыш игрока А, независимо от того, что делает игрок В. Точка максимума нижней огибающей – это и есть решение задачи по принципу максимина. Координатами этой точки будут р1 – одна из вероятностей смешанной стратегии игрока А и a – выигрыш игрока А.

# Заметим, что содержательной является только часть графика, заключенная в интервале 0 ≤ р1 ≤ 1 . Все линии и точки, лежащие за пределами этого интервала не принимаются во внимание. #

"На глаз" координаты точки максимума нижней огибающей видны плохо. Точка максимума нижней огибающей – это точка пересечения прямой 3 и прямой 4. Найдем её точные координаты, решив систему соответствующих уравнений:

ÞÞÞ


Итак, для игрока А все ясно:

смешанная стратегия игрока А: Р = ,

выигрыш игрока А:a = .

Аналогичные рассуждения нужно повторить и для игрока В.

Точка максимума нижней огибающей – это точка пересечения прямой 3 и прямой 4. Значит оптимальная смешанная стратегия игрока В определяется двумя стратегиями В3 и В4 соответственно.

Проигрыш игрока В, соответствующий i-той чистой стратегии игрока A, будет вычисляться по формуле:

вi* = ai3 q3 + ai4 q4 = ai3 q3 + ai4 (1 – q3) = (ai3 – ai4) q3 + ai4

В данном случае будем иметь два уравнения, соответствующие двум возможным чистым стратегиям игрока А:

в2* = –2q3 + 3

Решив систему этих двух уравнений, найдем q3 – одну из вероятностей смешанной стратегии игрока В и в – выигрыш игрока В:

ÞÞÞ

Все выяснили также и для игрока В:

смешанная стратегия игрока В: Q =

проигрыш игрока В:в =

Выигрыш игрока А и проигрыш игрока В совпадают – это и будет ценой игры.

Ответ: смешанная стратегия для первого игрока Р = ,

смешанная стратегия для второго игрока Q = ,

цена игры n = .

Видим, что ответы в случае решения задачи симплекс-методом и в случае решения этой же задачи графическим методом совпали.

Мораль вышесказанного такова, что если имеем задачу размерности 2 х nи под рукой нет компьютера, то точное решение можно получить с помощью графического метода.

Если имеем задачу размерности m х 2 , то делаем то же самое, поменяв игроков местами и транспонировав платежную матрицу. #

Если же под рукой есть компьютер, то такие задачи удобнее решать симплекс-методом средствами MS Excel. Если же поставленная задача любой большей размерности, то решить ее можно только симплекс-методом либо вручную, либо опять таки средствами MS Excel.

Раздел 5. Принятие решения в условиях нескольких критериев выбора

5.1 Постановка задачи, основные понятия

Все перечисленные классические критерии выбора не охватывают всевозможные практические ситуации. К каждой конкретной практической ситуации ЛПР может выработать свой "новый" критерий, который будет более точно количественно и качественно описывать данную ситуацию.

К сожалению или счастью, жизнь устроена несколько сложнее и достаточно часто бывает невозможно описать ситуацию одним критерием. Даже в обыденной жизни мы практически никогда не используем единственный критерий, например, при выборе подарка ко дню рождения, или при выборе блюд из меню в кафе, или при выборе места, куда поехать в отпуск.

А представьте, что вы – проектировщик баз данных. В таком случае при выборе оптимального проекта баз данных вам следует учитывать тоже несколько критериев: объем занимаемой оперативной памяти, средняя скорость одной операции, размер программного кода, аппаратные требования, обучаемость обслуживающего персонала, возможность и стоимость сопровождения и прочие. Ниже будут рассматриваться прикладные задачи с уже изученными нами критериями: Байеса, Лапласа и др. Но если вы все-таки – например, проектировщик баз данных, то вам надо будет вместо них рассматривать "свои" критерии, которые являются спецификой вашего рода деятельности.

Такие ситуации описываются многокритериальными задачами принятия решений.

Теоретически можно представить себе случай, когда в допустимом множестве альтернатив существует одна альтернатива, которая лучше всех по всем критериям сразу. Очевидно, что она и будет лучшей.

Однако на практике такое бывает не всегда. Для решения таких задач разработаны специальные методы. Надо сказать, что данное научное направление сравнительно ново – оно развивается последние 30 – 40 лет. Уже известные методы корректируются, обобщаются, разрабатываются новые. Приятно отметить, что одним из основоположников и всемирно признанным гуру данного научного направления является наш почти соотечественник В.В. Подиновский.

Рассмотрим приведенный выше числовой пример. И применим к нему все изученные нами критерии. Результаты отобразим в таблице:

Заметим, что стратегия (альтернатива) А4 по всем девяти критериям хуже, чем любая другая стратегия. Её можно убрать из рассмотрения, при этом результат выбора не изменится. Это утверждает принцип Парето . Оставшиеся альтернативы А1, А2, А3, будут образовывать множество Парето для данной задачи.

Из допустимого множества альтернатив множество Парето образуют те альтернативы, каждая из которых не хуже по всем критериям, чем любая альтернатива, не вошедшая во множество Парето, а хотя бы по одному критерию – лучше.

Согласно принципу Парето оптимальная альтернатива содержится во множестве Парето. Если, например исходная задача содержит 100 альтернативных решений, а множество Парето состоит из 20 альтернатив, то применение принципа Парето в 5 раз уменьшает размерность задачи, соответственно в 5 раз увеличится скорость работы программы, реализующей решение такой задачи!

Далее полученную многокритериальную задачу принятия решения на множестве Парето можно свести к однокритериальной, введя некий обобщенный критерий Z* как функцию от предыдущих частных критериев. Обобщенный критерий Z* в литературе еще называют функцией полезности . Процесс сведения многокритериальной задачи к однокритериальной называется свёрткой .

5.2 Линейные свёртки

Начнем с линейных свёрток. Все линейные свёртки основываются на принципе: "низкая оценка по одному критерию может быть компенсирована высокой оценкой по другому".

Рассмотрим простую линейную аддитивную свёртку:

То есть, данная свёртка подсчитывает, сколько раз та или иная стратегия была оптимальной. Результаты отобразим в таблице:

В последнем столбе таблицы размещены результаты свёртки. Как видим, оптимальной стратегией является А3.

Такая свёртка является самой простой из линейных, она не учитывает количественных показателей значений критериев.

Рассмотрим линейную аддитивную свёртку с нормирующими множителями:

Как видим, оптимальной стратегией также является А3. Но в этом случае уже нет такого количественного отрыва как в предыдущей простой линейной свёртке. Да и стратегия А2 уже не кажется очень сильно плохой. Если бы были чуть другие начальные данные, то ответы двух рассмотренных вариантов свёрток могли бы и не совпасть.

Линейная аддитивная свёртка с нормирующими множителями позволяет работать с количественными критериями, имеющими, как в нашем случае, разные единицы измерений.

Рассмотрим линейную аддитивную свёртку с весовыми коэффициентами:

вj – весовые коэффициенты, отражающие относительный
вклад частных критериев в общий критерий.

Весовые коэффициенты принято указывать уже нормированными величинами (Sвj = 1).

Очевидно, что в каждой отдельной конкретной ситуации частные критерии по-разному влияют на общий суперкритерий. Поэтому естественно им придать в общей формуле разный удельный вес. Это можно сделать с помощью весовых коэффициентов. Но где же их взять? Обычно ЛПР сам назначает каждому критерию весовые коэффициенты на свой "мудрый" взгляд. На этом этапе строгая математическая наука заканчивается – конечный результат лежит целиком на совести ЛПР и зависит от его опыта и интуиции в данной сфере. Однако от такого субъективизма никуда не денешься – нельзя же всю жизнь формализовать с помощью математических формул!

Как видим, при неизменном условии задачи оптимальной получилась стратегия А2, хотя в двух предыдущих свёртках она "пасла задних". Все дело в весовых коэффициентах!

5.3 Максиминная и лексикографическая свёртки

Максиминная свёртка – это самый простой способ построения обобщенного критерия (суперкритерия), основанный на применении уже хорошо нам известного принципа максимина.

Пусть мы имеем оценки некоторых объектов (альтернатив) по nкритериям. Каждый из критериев имеет свою размерность, и эти размерности обычно не совпадают. Поэтому для начала нужно нормировать все имеющиеся оценки. Делается это с помощью нормирующих множителей – на основе исходной матрицы оценок строится новая матрица с такими элементами:

где aj = – нормирующие множители.

Исходную матрицу мы, так же как и ранее, дополнили справа еще одним столбцом, в который внесли значения минимальных элементов каждой пересчитанной строки.

Из элементов добавленного столбца выбираем наибольший. Строка, в которой он стоит и будет оптимальной альтернативой. В данном случае оптимальной будет альтернатива А1.

Недостаток максиминной свёртки – это то, что она учитывает только те критерии, которые дают самые плохие оценки, все остальные критерии игнорируются. Из-за этого максиминную свёртку используют не слишком часто, чаще используют линейные и мультипликативные свёртки. Зато такой подход всегда дает гарантированный результат , ниже которого исхода не будет.

А что делать, если максиминная свёртка даст несколько одинаковых результатов (такое тоже бывает!), а ЛПР необходимо выбрать одно решение? Для такого интересного случая А. Джоффрион предложил использовать так называемую лексикографическую свёртку . Делается это так. Берутся две (или несколько) оптимальные альтернативы, полученные методом максиминной свёртки, и из них выбирается наилучшая методом линейной свёртки.

Как видим, с такими числовыми данными максиминная свёртка оптимальными считает альтернативы А1 и А2 . Теперь после максиминной свёртки применим к альтернативам А1 и А2 линейную свёртку:

В результате получили однозначный ответ: оптимальной является альтернатива А1 .

5.4 Мультипликативные свёртки

Рассмотрим мультипликативную свёртку с нормирующими множителями:

где aj – нормирующие множители.

Мультипликативная свёртка основывается на постулате: "низкая оценка хотя бы по одному критерию влечет за собой низкое значение функции полезности". Действительно, если вы выбираете торт, и он – несвежий, то это обстоятельство никак не может быть компенсировано его красотой или ценой.

Посмотрим, какие результаты даст мультипликативная свёртка с весовыми коэффициентами:

где aj – нормирующие множители,

вj – весовые коэффициенты.

Итоги отражены в таблице:

Оптимальной стратегией снова является А3.

В конце еще раз напомним непременное правило: перед тем, как применять какую-либо свёртку нужно автоматически всегда выделять множество Парето. И именно для множества Парето применять свёртки. Иначе вы или ваша программа будете выполнять лишнюю ненужную работу.

5.5 Многокритериальный выбор на языке бинарных отношений

До этого были рассмотрены случаи, когда все критерии оценивали все альтернативы. Все альтернативы можно было сравнить друг с другом по каждому критерию. А что делать, если не все альтернативы будут оценены всеми критериями? В таком случае появятся альтернативы, не сравнимые между собой по некоторым критериям. Рассмотрим такой случай на нашем примере (уберем из него некоторые оценки):

При таком условии альтернативы можно сравнить между собой лишь попарно. Такие попарные сравнения называются бинарными отношениями . Обозначается бинарное отношение (на примере критерия Байеса из нашей таблицы) А1RА2 – альтернатива А1 лучше альтернативы А2.

Дадим математически точное определение бинарных отношений.

Бинарным отношением на множестве Ω называется произвольное подмножество R множества Ω Х Ω , где Ω Х Ω – это множество всех упорядоченных пар (ai ;aj) , где ai , aj Î Ω . #

Бинарные отношения очень удобно изображать наглядно. Представим четыре стратегии из нашего примера в виде точек на плоскости. Если имеем, что какая-то альтернатива лучше другой, то проведем стрелку от лучшей альтернативы к худшей. На примере критерия Байеса из нашей таблицы имеем А1RА2 , поэтому на плоскости проведем стрелку от точки А1 к точке А2. Аналогичным образом поступим со всеми начальными данными из таблицы. Заметим, что бинарные отношения не исключают отношения элемента с самим собой. На рисунке такое бинарное отношение будет задаваться петлёй со стрелкой. В результате получим следующую картину:

Подобные фигуры называются ориентированными графами . Точки – это вершины графа, стрелки между точками – это дуги графа.

Дадим математически точное определение графа.

Графом называется пара (Е, е), где Е – непустое конечное множество элементов (вершин), е – конечное (возможно и пустое) множество пар элементов из Е (множество дуг). #

Две вершины, соединенные дугой, называются смежными вершинами. Дуга, соединяющая две вершины, называется инцидентной этим вершинам. Две вершины, соединенные дугой, называются инцидентными этой дуге.

Как же произвести выбор наилучшего элемента из имеющихся альтернатив (наилучшей вершины графа)? Для этого сначала необходимо определить, что же будет являться наилучшей вершины (наилучшими вершинами) графа. На этот счет имеются две исторически сложившиеся в теории графов точки зрения.

1)Максимальным элементом множества Ω по бинарному отношению R называется такой элемент х Î Ω , что "у Î Ω выполняется отношение хRy .

Иначе говоря, максимальный элемент множества должен быть "лучше" каждого элемента этого множества. Не исключается и то, что он может быть "лучше" самого себя, кроме этого максимальный элемент может быть одновременно и "хуже" какого-либо элемента этого множества. Слова "лучше" и "хуже" не совсем верно передают смысл бинарных отношений.

Для графов понятие максимальный элемент – это вершина, из которой исходят стрелки во все остальные вершины графа. Например, на рис. 1 максимальным элементом будет вершина А1 – из неё выходят стрелки во все остальные вершины графа.

2)Оптимальным по Парето элементом множества Ω по бинарному отношению R называется такой элемент х Î Ω , что ù$у Î Ω для которого выполнялось бы отношение уRх.

Иначе говоря, оптимальный по Парето элемент множества – это такой элемент, "лучше" которого в рассматриваемом множестве нет.

Для графов понятие оптимальный по Парето элемент – это вершина, в которую не входит ни одна стрелка. Например, на рис. 1 оптимальным по Парето элементом будет вершина А1 – в неё не входит ни одна стрелка.

Видим, что два разных подхода к определению наилучшего элемента в нашем примере дали одинаковый результат. Но такое бывает не всегда.

Рассмотрим несколько примеров.

У графа на рис. 2 максимальным элементом будет вершина А1 – из неё выходят стрелки во все остальные вершины графа. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 3 максимальным элементом будет также вершина А1 – из неё выходят стрелки во все остальные вершины графа. Заметим: то, что в неё входит стрелка из вершины А4 , по определению совершенно не важно. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 4 максимальными элементами будут вершины А1 и А4 – из них выходят стрелки во все остальные вершины графа. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 5 максимального элемента нет. Оптимальными по Парето элементами будут вершины А1 и А4 – в них не входит ни одна стрелка.

Отметим очевидные особенности.

У графа либо нет максимальных элементов, либо есть.

Оптимальными по Парето элементами могут быть несколько вершин графа, либо таковых может не быть.

В графе не может один (или одни) элемент быть максимальным, а другой (или другие) элемент быть оптимальным по Парето.

Итак, если имеется задача многокритериального выбора, описанная на языке бинарных отношений, то её удобно представить наглядно в виде графа. Однако такое удобство хорошо для небольшого количества вершин (альтернатив). Если вершин довольно много, то вся наглядность пропадает и легко можно запутаться. В таком случае граф удобно представить в виде матрицы смежности или матрицы инцидентности.

Матрица смежности вершин графа – это квадратная матрица размера mxm(m – это количество вершин) с элементами:

По матрицам смежности искать максимальные элементы и элементы, оптимальные по Парето – одно удовольствие! Максимальные элементы – это те, чьи строки состоят из всех единиц (кроме себя самих – там может быть как нуль, так и единица). А оптимальные по Парето элементы – это те, чьи столбцы состоят из всех нулей.

Матрица инцидентности графа – это матрица, строки которой соответствуют вершинам, а столбцы – дугам. При этом предполагается, что граф не должен иметь петель.


Элементы матрицы инцидентности будут такими:

сij =

Видим, что каждый столбец должен содержать одну единицу и одну минус единицу, остальные элементы столбцов – нули. То есть каждая дуга из одной вершины выходит и в другую вершину входит.

Налицо также очевидна закономерность: максимальные элементы – это те, чьи строки содержат единиц на одну меньше, чем количество строк (вершин), а оптимальные по Парето элементы – это те, чьи строки не содержат минус единиц.

Используя замечательные особенности матриц смежности и инцидентности графов, не составит большого труда разрабатывать компьютерные программы по принятию решений для задач выбора, описанных на языке бинарных отношений.

Раздел 6. Принятие корпоративных решений

6.1 Групповая оценка объектов

В приведенном выше материале подразумевалось, что ЛПР – это некий эксперт-аналитик, принимающий решение по поставленной проблеме. А если проблемой занимаются несколько экспертов? А решение то должно быть одно! Такая задача называется задачей группового выбора или задачей принятия корпоративного решения.

Тут нужно отметить один важный психологический момент. Взрослого человека (начиная лет с 5-10) практически никогда невозможно заставить изменить свое мнение. (Есть, конечно, "безотказные" методы типа насилия, или денежного подкупа, но они к науке не имеют никакого отношения.) Поэтому эксперты в группе всегда будут:

Иметь разные мнения по поводу набора критериев, по которым надо оценивать альтернативные решения;

Иметь разные мнения о сравнительной значимости (весовых коэффициентах) критериев;

Давать разные оценки альтернатив по критериям;

Кроме этого эксперты будут иметь разную компетентность.

Исходя из таких очевидных фактов, можно с уверенностью утверждать, что у группы экспертов всегда должен быть руководитель.

Каждый из экспертов группы в принятии своего решения будет руководствоваться своим опытом и своими знаниями. Будем надеяться, что вышеприведенный материал окажет экспертам некую посильную помощь. Материал данного подраздела предназначен для руководителей групп экспертов, которые на основе всех решений группы обязаны приять единственное правильное решение.

Вспомним, как обычно преодолеваются групповые разногласия? В подавляющем большинстве случаев это делается с помощью обыкновенного голосования.

Для начала необходимо найти множество Парето: это будут альтернативы А1, А2, А4. Оптимальное решение будем искать среди них. Для проведения голосования определим функцию полезности:

В последнем столбе таблицы размещены результаты голосования. Как видим, оптимальным решением является альтернатива А4 – за неё проголосовало пять экспертов из девяти – больше половины.

При всей простоте, широкой распространенности и многовековой исторической традиции использования метод голосования имеет один существенный недостаток. Голосование не считается с мнением меньшинства . Мнение меньшинства полностью игнорируется! Но иногда ведь случается, (правда очень редко) что именно среди этого меньшинства и находилось наилучшее решение! Кроме практического результата голосование наносит психологический удар по тем экспертам, мнения которых были отброшены. Математические методы принятия корпоративных решений стараются исправить этот недостаток. Учитываются мнения всех экспертов.


Рассмотрим такую функцию полезности с нормирующими множителями:

В этом случае оптимальным решением является альтернатива А1.

Заметим, что такой способ учитывает также и то, что эксперты пользовались разными шкалами оценок объектов.

А теперь попробуем учесть ещё и степень компетентности каждого эксперта. Функция полезности при этом будет выглядеть так:

где aj – те же нормирующие множители,

kj – коэффициенты компетентности экспертов.

Ниже будет рассмотрен один из способов определения коэффициентов компетентности экспертов.

А пока рассмотрим ту же задачу с уже якобы вычисленными коэффициентами компетентности экспертов. В таблице снова сначала – условие, ниже – результаты:

А теперь мы получили в качестве оптимальной альтернативу А2.

Надо отметить, что приведенные два последних способа принятия группового решения годятся только для согласованных суждений экспертов. Согласованность – это степень расхождения мнений экспертов. Методика вычисления согласованности оценок экспертов достаточно сложна. По необходимости с ней можно ознакомиться в специальной литературе по принятию корпоративных решений.

Если эксперты честно оценивают реальный объект, то их оценки не должны сильно расходиться. Если же они все-таки существенно расходятся, то можно получить часто упоминаемую в литературе так называемую "среднюю температуру по больнице". Действительно, если сложить температуру всех высокотемпературных больных и температуру тел в морге, а потом поделить на общее количество замеров, то можно получить 36,6°. Свидетельствует ли это о том, что "в среднем" все находящиеся в больнице здоровы?

Если согласованность оказалась низкой, то нужно пытаться выяснить причину расхождений и по возможности попытаться устранить её. Часто причиной может быть отсутствие важной информации у некоторых экспертов. В некоторых случаях эксперты разбиваются на две устойчивые группы. Группы нужно уметь выявлять и обрабатывать отдельно.

6.2 Определение коэффициентов компетентности экспертов

Теперь опишем одну из методик определения коэффициентов компетентности экспертов.

Рассмотрим опять нашу задачу, в которой принимали участие девять экспертов. Предложим каждому из девяти экспертов в отдельности самому сформировать экспертную группу. Каждый эксперт может включить в экспертную группу произвольное количество участников. Себя он может как включать в эту группу, так и нет. В результате получим матрицу Х, состоящую из элементов хij:


По данным этой матрицы вычисляются коэффициенты компетентности экспертов:

Вычислим коэффициенты компетентности экспертов для нашей задачи и результаты занесем в таблицу:

Крайний правый столбец – это коэффициенты компетентности экспертов. Они уже были использованы в примере группового выбора, рассмотренного выше.

Раздел 7. Критерии модульного оценивания знаний

Кредитно-модульная система – это модель организации учебного процесса, которая основывается на объединении двух составляющих: модульной технологии обучения и кредитов (зачетных единиц) и охватывает содержание, формы контроля качества знаний, навыков и учебной деятельности студента в процессе аудиторной и самостоятельной работы.

Рейтинговая система оценивания – это система определения качества выполненной студентом всех видов аудиторной и самостоятельной работы и уровня приобретенных им знаний и навыков путем оценивания в баллах результатов этой работы во время текущего модульного и полусеместрового итогового контроля, с последующим переведением рейтинговой оценки в баллах в оценки традиционной национальной шкалы и шкалы ECTS.

Рейтинговая оценка состоит из баллов, которые студент получает за определенную учебную деятельность на протяжении усвоения данного модуля – тестирование, выполнение и защита индивидуальных задач (домашних контрольных работ), выполнение аудиторной самостоятельной работы и выступления на практических занятиях и т.п..

Семестровый курс дисциплины "Теория принятия решений" разбит на 4 модуля. В конце каждого модуля проводится модульный контроль в виде аудиторной контрольной работы (АКР) или защиты домашней контрольной работы (ДКР), который оценивается до 25 баллов.

Аудиторная контрольная работа – 20 баллов;

Выполнение аудиторной самостоятельной работы и выступления на практических занятиях – 5 баллов.

Домашняя контрольная работа – 20 баллов;

Выполнение аудиторной самостоятельной работы и выступления на практических занятиях – 5 баллов.

Аудиторная контрольная работа – 20 баллов;

Выполнение аудиторной самостоятельной работы и выступления на практических занятиях – 5 баллов.

Общая балльная оценка за полусеместр выводится простой суммой полученных студентом баллов за все модули полусеместра. Максимальная полусеместровая оценка составляет 100 баллов. Оценка по национальной шкале выводится в соответствии с таблицей:

Раздел 8. Задания для самостоятельной работы студентов

8.1 Домашняя контрольная работа

Согласно рабочей учебной программе дисциплины "Теория принятия решений" в модуле №3 выполняется домашняя контрольная работа.

Цель домашней контрольной работы – детальная и более тщательная проработка лекционного и практического материала, с целью проверки и контроля степени его усвоения, формирование у студентов предусмотренных рабочей программой навыков.

Домашняя контрольная работа выполняется на бумажных носителях.

Домашняя контрольная работа содержит 30 вариантов. Каждый вариант содержит четыре задания:

Задание №1 – решение матричной игры в чистых стратегиях;

Задание №2 – решение матричной игры в смешанных стратегиях симплекс-методом;

Задание №3 – решение матричной игры в смешанных стратегиях графическим методом.

Студент выбирает вариант домашней контрольной работы согласно своему порядковому номеру в журнале списка своей группы. Контрольная работа, не соответствующая своему варианту, не проверяется и к защите не допускается .

Задание №1.

Определить оптимальные чистые стратегии и цену игры:

1 вариант2 вариант3 вариант


4 вариант5 вариант6 вариант

7 вариант8 вариант9 вариант


Задание №2.

Определить симплекс-методом оптимальные смешанные стратегии и цену игры:

1 вариант2 вариант3 вариант


4 вариант5 вариант6 вариант

7 вариант8 вариант9 вариант

10 вариант11 вариант12 вариант

13 вариант14 вариант15 вариант

16 вариант17 вариант18 вариант

19 вариант20 вариант21 вариант


22 вариант23 вариант24 вариант

25 вариант26 вариант27 вариант

28 вариант29 вариант30 вариант

Задание №3.

Определить графическим методом оптимальные смешанные стратегии и цену игры:

1 вариант2 вариант3 вариант

4 вариант5 вариант6 вариант

7 вариант8 вариант9 вариант


10 вариант11 вариант12 вариант

13 вариант14 вариант15 вариант

16 вариант17 вариант18 вариант

19 вариант20 вариант21 вариант

22 вариант23 вариант24 вариант

25 вариант26 вариант27 вариант

28 вариант29 вариант30 вариант

8.2 Вопросы к модульным тестированиям

Общие вопросы к всем модулям:

1.Что такое исследование операций?

2.Что такое ЛПР?

3.Что такое математическая модель?

4.Что такое переменные?

5.Что такое альтернатива?

6.Что такое план?

7.Что такое ограничение?

8.Что такое допустимое множество?

9.Что такое допустимый план?

10.Что такое целевая функция?

11.Что такое оптимальный план?

12.Что такое математическое моделирование?

13.Что такое математическое программирование?

14.Что такое линейное программирование?

15.Что такое целочисленное программирование?

16.Что такое динамическое программирование?

17.Что такое нелинейное программирование?

18.Что такое задача принятия решения?

19.Что такое бинарные отношения?

20.Что такое ориентированный граф?

21.Что такое множество Парето?

22.Найти множество Парето.

23.Что такое принятие решения в условиях определенности?

Вопросы к модулю №1:

24.Что такое принятие решения в условиях риска?

25.Какие условия использования критерия Байеса?

26.Решить задачу с помощью критерия Байеса.

27.Какие условия использования критерия Лапласа?

28.Решить задачу с помощью критерия Лапласа.

29.Какие условия использования критерия Гермейера?

30.Решить задачу с помощью критерия Гермейера.

31.Какие условия использования критерия Ходжа-Лемана?

32.Решить задачу с помощью критерия Ходжа-Лемана.

Воп росы к модулю №2:

33.Что такое принятие решения в условиях неопределенности?

34.Какие условия использования принципа максимина?

35.Решить задачу с помощью принципа максимина.

36.Какие условия использования критерия азартного игрока?

37.Решить задачу с помощью критерия азартного игрока.

38.Какие условия использования критерия произведений?

39.Решить задачу с помощью критерия произведений.

40.Какие условия использования критерия Севиджа?

41.Решить задачу с помощью критерия Севиджа.

42.Какие условия использования критерия Гурвица?

43.Решить задачу с помощью критерия Гурвица.

Вопросы к модулю №4:

44.Что такое принятие решения в условиях противодействия?

45.Что такое матричная игра?

46.Что такое платежи матричной игры?

47.Что такое матрица платежей?

48.Что такое матричная игра с нулевой суммой?

49.Что такое матричная игра с ненулевой суммой?

50.Что такое седловая точка?

51.Что такое чистая стратегия?

52.Что такое смешанная стратегия?

53.Найти седловую точку матрицы.

54.Решить матричную игру в чистых стратегиях.

55.Найти множество Парето для задачи двукритериального выбора.

56.Решить задачу многокритериального выбора методом линейной аддитивной свертки.

57.Решить задачу многокритериального выбора методом мультипликативной свертки.

58.Решить задачу многокритериального выбора методом максиминной свертки.

59.Решить задачу про групповую экспертную оценку.

60.Решить задачу экспертной оценки объектов с учетом компетентности экспертов.

8.3 Контрольные вопросы к экзамену по дисциплине

1. Исследование операций как наука о принятии оптимальных решений.

2. Построение математической модели.

3. Математическое программирование. (Общий обзор, основные понятия, классы задач.)

4. Принятие решения: постановка задачи, возможные случаи.

5. Принятие решений в условиях риска. Критерий Байеса.

6. Принятие решений в условиях риска. Критерий Лапласа.

7. Принятие решений в условиях риска. Критерий Гермейера.

8. Принятие решений в условиях риска. Критерий Ходжа-Лемана.

9. Принятие решений в условиях неопределенности. Принцип максимина.

10. Принятие решений в условиях неопределенности. Критерий азартного игрока.

11. Принятие решений в условиях неопределенности. Критерий произведений.

12. Принятие решений в условиях неопределенности. Критерий Севиджа.

13. Принятие решений в условиях неопределенности. Критерий Гурвица.

14. Принятие решений в условиях противодействия. Общие понятия.

15. Матричные игры.

16. Чистые стратегии, седловая точка, цена игры.

17. Смешанные стратегии.

18. Представление матричной игры в виде задачи линейного программирования.

19. Графический метод решения матричной игры.

20. Принятие решений в условиях нескольких критериев выбора (многокритериальный выбор).

21. Линейные свёртки.

22. Максиминная и лексикографическая свёртки.

23. Мультипликативные свёртки.

24. Описание выбора на языке бинарных отношений.

25. Множество Парето. Максимальный элемент.

26. Матрицы смежности и инцидентности.

27. Принятие корпоративных решений.

28. Компетентность экспертов.

Контрольные экзаменационные вопросы используются в случае сдачи студентом экзамена по дисциплине на повышенную оценку в сравнении с оценкой, которую он получил по рейтингу полусеместра. В соответствии с действующим "Положением о кредитно-модульной системе организации учебного процесса и рейтинговом оценивании знаний студентов ЗГИА" оценка, которая получена на экзамене является окончательной и именно она вносится в экзаменационную ведомость и индивидуальный план (зачетную книжку) студента.

Учебно-методический материал по дисциплине

Основная литература (имеется в наличии в библиотеке ЗГИА)

1.Акулич И.Л. Математическое программирование в примерах и задачах: Учеб. пособие для вузов. - М.: Высшая школа, 1986. - 319 c.

2.Волков И.К., Загоруйко Е.А. Исследование операций: Учебник для втузов / Ред. Зарубин В.В., Крищенко А.П. - 2-е изд. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. - 435 c.

3.Евланов В.Г. Теория и практика принятия решений. – М.: Экономика, 1984. – 175 с.

4.Кини Р.Л., Райфа Х. Принятие решений при многих критериях: предпочтения и замещения. – М.: Радио и связь, 1981. – 560 с.

5.Колпаков В.М. Теория и практика принятия управленческих решений: Учеб. пособие для вузов. – К.: МАУП, 2000. – 254 с.

6.Костевич Л.С., Лапко А.А. Теория игр. Исследование операций: Учеб. пособие для вузов. - Мн.: Вышэйшая школа, 1982. - 230 c.

7.Кузнецов Ю.Н., Кузубов В.И., Волощенко А.Б. Математическое программирование: Учеб. пособие для вузов - М.: Высшая школа, 1976. - 350 c.

8.Мулен Э. Кооперативное принятие решений: Аксиомы и модели. - М.: Мир, 1991. - 463c.

9.Таха Хемди А. Введение в исследование операций, 7-е изд: Пер. с англ. – М.: Изд. дом "Вильямс", 2005. – 912 с.

10.Теория выбора и принятия решений Учеб. пособие для вузов. - М.: Наука, 1982. - 328 c.

11.Тоценко В.Г. Методы и системы поддержки принятия решений: Алгоритмический аспект / НАН Украины. Ин-т пробл. регистрации информ. - К.: Наук. думка, 2002. – 381 c.

12.Трухаев Р.И. Модели принятия решений в условиях неопределенности / АН СССР. Дальневост. науч. центр. Хабаров. комплекс НИИ. - М.: Наука, 1981. - 257 c.

Дополнительная литература

13.Вентцель Е.С. Исследование операций. – М.: Советское радио, 1972.

14.Гафт М.Г., Подиновский В.В. О построении решающих правил в задачах принятия решений. - Автоматика и телемеханика, №6, 1981.

15.Джексон П. Введение в экспертные системы: Пер. с англ.: Учеб. пособие. – М.: Изд. дом "Вильямс", 2001.

16.Ершов А.Т., Карандаев И.С., Статкус А.В. Матричные игры и графы. – М.: МИУ, 1986.

17.Ларичев О.И. Наука и искусство принятия решений. – М.: Наука, 1979.

18.Ларичев О.И. Теория и методы принятия решений, а также Хроника событий в Волшебных странах: Учебник. – М.: Логос, 2003.

19.Сигал И.Х., Иванова А.П. Введение в прикладное дискретное программирование: модели и вычислительные алгоритмы: Учеб. пособие. – М.: ФИЗМАТЛИТ, 2002. – 240с.

20.Фон Нейман Дж., Моргенштерн О. Теория игр и экономическое поведение. – М.: Наука, 1970.

21.Черноруцкий И.Г. Методы принятия решений. – СПб.: БХВ-Петербург, 2005. – 416 с.

Тема 13

Организация разработки решений руководителем на основе системного анализа складывающейся обстановки

1. Основные понятия и определения теории принятия решений…………… 2

2. Факторы, определяющие эффективность решений ……………..………… 9

3. Концепции, принципы и парадигмы разработки решений …..………….. 16

4. Модель проблемной ситуации …………………………………………….. 25

Литература …………………………………………………………………….. 33

Санкт-Петербург - 2012


Основные понятия и определения теории принятия решений

Далее будем использовать следующие основные понятия: управление, ЛПР, проблема или задача (управления), решение, цель (управления, деятельности), операция (кибернетиче­ская), альтернатива, активные ресурсы, результат, мо­дель, условия (разработки решений).

Обращаем внимание на то, что эти основные понятия сле­дует воспринимать только как термины, а не как стро­гие определения. Причин тому, как минимум, две.

Во-первых, для некоторых категорий теории принятия решений (ТПР) просто нет стро­гих определений. Во-вторых, любое определение все­гда достаточно косно, а ТПР - динамическая, бурно развивающаяся наука, которая постоянно пересматри­вает свой понятийный и методический аппараты. Следо­вательно, нет необходимости учить наизусть те слова, посредством которых будем толковать смысл основ­ных понятий, однако обязательно следует глубоко про­никнуться теми мыслями и образами, которые за этими словами стоят, уметь их интерпретировать.

Управление. Как уже отмечалось, решение проблемы, стоящей перед ЛПР, возможно только путем направле­ния и задействования активных ресурсов для исполне­ния конкретных заданий или работ. Ничто само по се­бе не делается. Людям, принимающим участие в опера­ции, нужно указать, где, когда, что и с помощью чего сделать, каковы требования к качеству выполняемых заданий или работ, каковы допустимые вариации от на­меченных заданий и при каких форс-мажорных обстоя­тельствах следует принять экстренные меры, каковы эти меры и пр. Все это объединяется одним понятием - управление. Управлять - это значит направлять кого-либо или что-либо к намеченной цели для достижения желаемого результата.

Главное требование к качеству управления - это его непрерывность. Ошибочно представление о том, что все само собой сделается - это опасное заблуждение! Оно сродни представлению о том, что при поездке на автомобиле можно на длительное время бросить руль. Любое дело, как и автомобиль, без управления может двигаться только в одном направлении - под откос. Помимо непрерывности есть и ряд других требований к управлению, например, требование определенной свободы («люфта») в действиях исполнителей, требований устойчивости и гибкости (означающее, что в случае необходимости можно провести корректировки ранее намеченного плана с минимальными потерями), оптимальности и некоторые другие.


Решение. Обычно одну и ту же задачу можно решить разными способами. Однако качество исхода операции, то есть значения ее результатов, зависит не только от качества активных ресурсов и условий их применения, но и от качества способа задействования этих ресурса в этих условиях. В этой связи в данном курсе слово «решение» чаще всего будет интерпретироваться как наилучший способ разрешения проблемы, стоящей перед ЛПР, как наиболее предпочтительный способ достижения намеченной ЛПР цели. Следовательно, значение слова «решение» в нашем случае будет несколько отличаться от того значения, которое ему приписывается, например, в математике, когда говорят о решении математической задачи.

В математике правильное решение правильно поставленной задачи всегда одно и то же, независимо от того, как и в каких условиях эту задачу решает. Математическое решение всегда объективно. В отличие от него решение проблемы - субъективно, так как разные ЛПР могут выбрать разные, понравившиеся именно им способы разрешения проблемы. Да к тому же условия решения проблемы накладывают существенный отпечаток на выбор ЛПР: одно и то же ЛПР в разных условиях может предпочесть в общем случае неодинаковый способ устранения проблемы.

Цель. Формализованное описание того желаемого состояния, достижение которого отождествляется в сознании ЛПР с решением проблемы или задачи. Цель описывается в виде требуемого результата.

Альтернатива. Это условное наименование какого-то из возможных (допустимых в соответствии с законами природы и предпочтениями ЛПР) способов достиже­ния цели. Каждая отдельная альтернатива отличается от других способов решения проблемы последователь­ностью и приемами задействования активных ресур­сов, то есть специфическим набором указаний кому, что, где, с помощью чего и к какому сроку сделать. Активные ресурсы - это все то, что может быть исполь­зовано ЛПР для решения проблемы. Главными из ак­тивных ресурсов всегда будем считать людей, время, финансы (деньги) и расходные материалы, имеющиеся в распоряжении ЛПР.

Результат. Под результатом будем понимать специаль­ную форму описания наиболее важных для ЛПР ха­рактеристик исхода операции. При исследовании опе­рации степень предпочтительности (или, наоборот, не предпочтительности) ее результатов представля­ют в наиболее подходящей для этого шкале: число­вой, количественной или качественной. Пусть, на­пример, в качестве исходов финансовой операции рассматривают «победу» и «поражение». В таком слу­чае можно будет измерять результаты операции, на­пример, или в количествах реализованной прибыли, приобретенных акций и других ценных бумаг (коли­чественная шкала), или в отношении интенсивнос­ти проявления исхода, например «грандиозная по­беда», «незначительное поражение», «значительное поражение» (качественная шкала), или в отношении порядка следования исходов - первая победа, вто­рая победа, третья победа (числовая шкала). Тип шкалы выбирается в зависимости от цели измерения результатов; об этом более подробно будет сказано позже.

Модель. Реальный мир сложен и многообразен. Для его изучения или познания требуется много творческих усилий и времени. Вместе с тем, для разработки реше­ний часто ЛПР достаточно знать в изучаемом объекте или явлении не все, а лишь существенные свойства, особенности, закономерности, важные для решения проблемы. В целях экономии активных ресурсов, прежде всего, времени, было изобретено моделирование. Это специальный подход к изучению реальной действительности, когда ЛПР отбрасывает излишне подробные детали изучаемого объекта или явления, оставляет лишь наиболее существенные его черты. Нужно только требовать и следить, чтобы такое упрощение не было огульным. Важно, чтобы по результатам и изучения оставшихся после упрощения фрагментов облика, свойств и связей можно было бы сделать правильные выводы для принятия решений. Только в таком случае моделирование окажется действительно полезным. В результате все существенные для разработки решений реальные объекты и явления ЛПР заменяет компактными, выразительными и удобными для описания, хранения и другого использования упрощенными образами. Подобные упрощенные образы называют моделями. Таким образом, модель сохраняет все важное, что нужно обязательно учесть, вырабатывая решения, однако форма представления модели выбирается такой, чтобы процесс разработки решения был бы эффективным. Следует иметь в виду, что моделирование проводится с разными целями. Вот перечень наиболее часто встречающихся целей моделирования:

§ изучить какой-то элемент реальной действительности - дидактические и исследовательские модели;

§ отработать какой-то элемент практических действий - тренировочные и игровые модели;

§ оптимизировать какой-либо процесс, форму или содержание чего-либо - оптимизационные модели;

§ делегировать полномочия на совершение определенных действий другими лицами - модели предпочтений.

Каждой цели моделирования можно поставить в соответствие наиболее предпочтительную форму построения и представления модели. Например, модель может быть сформирована описательно, то есть словами.

Такие модели называют вербальными. Элементы реаль­ной действительности и связи между ними можно так­же представить с помощью символов или знаков. Это - семиотические модели. Кроме того, с детства каждому знакомы физические копии предметов и объектов - игрушки. И каждый в детстве играл в игры: в войну, школу, какую-то профессию, то есть моделировал по­ведение в реальной действительности. Каждый из нас когда-то что-то рисовал, выражая свои мысли об уви­денном или услышанном. Эти графические изображе­ния - рисунки, схемы, карты местности и т.п. - так­же модели, то есть - упрощенные образы реальной действительности.

Для каждой из перечисленных моделей характерен свой собственный, вполне определенный набор свойств. Вер­бальные модели обладают высокой информационной емкостью (вспомните хотя бы величайшее произве­дение Л.Н. Толстого «Война и мир»), но их трудно ис­пользовать для преобразования информации или ре­шения расчетно-аналитических задач. Семиотические модели в зависимости от конкретной формы исполь­зования тех или иных знаков и символов - схемы, графики, логические диаграммы, математические урав­нения и неравенства - хороши, например, для ин­формационных и оптимизационных задач, для пред­ставления их средствами вычислительной техники. Игровые модели (политические, экономические, соци­альные и деловые игры) занимают особое место. С по­мощью игровых моделей удобно исследовать механиз­мы поведенческой неопределенности. При разработке управленческих решений в экономике наиболее час­то используют вербальную и графическую формы мо­делей. Для повышения обоснованности и доказатель­ности решений применяют математические и игро­вые модели.

Нa основе системного анализа порядка работы руково­дителя предприятия (фирмы) при разработке решений разработана графическая модель процесса управления. Эта модель представлена на рис.1.1.

Условия разработки решений. Каждая проблема всегда связана с конкретной обстановкой, ситуацией и вполне определенным комплексом условий. Проблема всегда решается в рамках существующего положения вещей. Анализируя тот или иной способ достижения цели ЛПР должно четко представлять закономерности, связывающие ход и исход операции с принятыми решениями. Совокупность представлений об этих закономерностях, конечно, воспринимается ЛПР в упрощенной, модельной форме. Некоторые из закономерностей удается фиксировать в строго формальном виде. Например, законы Ньютона в механике описывают в математической форме взаимосвязи в цепочке «масса-сила-ускорение».

Рис.1.1. Графическая модель процесса управления

В ТПР модель закономерностей в цепочке «решение-исход» называют «механизмом ситуации». При этом считают, что модельное упрощение связей в указанной цепочке ни в коем случае не означает их отбрасывания.

Имеется в виду, что из всего многообразия связей и закономерностей в модель включают лишь те, которые имеют преобладающее значение, то есть вносящие наиболее значительный вклад в формирование результата. Например, при оценке времени t падения тела в атмо­сфере Земли с высоты h нужно учитывать, строго гово­ря, влияние и веса, и формы падающего тела, и возмущений атмосферы (ветер), однако в значительном диа­пазоне значений высоты h можно считать, что только высота как ведущий фактор определяет «механизм си­туации». В таком случае связь между h и t будет упро­щенно однозначной, а именно: h = 0.5 g t 2 .

В ТПР рассматривают только два типа модельных свя­зей в «механизме ситуации»: однозначные и неодно­значные.

Однозначные связи порождают устойчивое и вполне оп­ределенное соотношение между реализуемым решени­ем и исходом от его реализации. И как только задан спо­соб действий, так исход и связанные с ним результаты сразу становятся вполне определенными (как в нашем примере с оценкой времени падения с заданной высо­ты). Подобные «механизмы ситуации», в которых ожида­емый исход наступает практически всегда, а вероятность иных (неожиданных для ЛПР) исходов пренебрежитель­но мала, будем называть нерискованными ситуациями, детерминированными механизмами ситуации или условиями определенности.

Многозначными считают такие связи между способом и ис­ходом операции (рискованные ситуации, или условия неопределенности), в рамках которых при многократ­ном воспроизведении одной и той же альтернативы воз­можно появление разных исходов. При этом степени возможности появления тех или иных исходов и резуль­татов вполне соизмеримы (то есть нельзя какие-то ис­ходы считать крайне мало возможными по сравнению с другими).

Наиболее выразительная модель «механизма ситуации» с многозначной связью между альтернативой и исхо­дом - случайный механизм наступления страховых случаев. Даже при страховании одним и тем же страховщиком нескольких одинаковых объектов возможны два исхода: «наступление страхового случая» или «не­наступление страхового случая». А если с наступлением страхового случая связать количество объектов страхования, то в результате получается несколько возможных значений оплачиваемой страховой суммы объектов страхования. Это типичный механизм стохастической (случайной) неопределенности, а взаимодействие с конкурентами - поведенческой.

Но бывают и более сложные ситуации. Например, может не оказаться данных о вероятностях наступления тех или иных исходов, хотя и известно, что в операции главными являются случайные факторы. Или может оказаться, что нет никаких данных о возможных альтернатив поведения других субъектов, вовлеченных в операцию ЛПР, хотя известно, что эти лица будут предпринимать какие-то действия для достижения целей. Наконец, может быть просто неясна или неизвестна природа явлений и событий, происходящих в операции. «Механизмы» всех подобных ситуаций будем относить к классу природно-неопределенных. Перечень понятий, используемых в ТПР, не ограничивается данным представлением. По мере изложения материала в соответствующих местах будут введены там важные понятия, как проблемная ситуация, эффектность решения, эксперт, критерий, предпочтения, наилучшее решение и др.