NASA готовится к запуску в дальний космос. Даты космических стартов Запланированные запуски в дальний космос

Юнона. Межпланетная станция Юнона была запущена в 2011 году и должна выйти на орбиту Юпитера в 2016. Она опишет длинную петлю вокруг газового гиганта, собирая данные о составе атмосферы и магнитном поле, а также выстраивая карту ветров. Юнона — первый аппарат НАСА, не использующий ядро из плутония, а оборудованный солнечными панелями.


Марс-2020. Следующий марсоход, отправляемый на красную планету, во многом будет копией хорошо показавшего себя Кьюриосити. Но его задача будет иной — а именно, поиск любых следов жизни на Марсе. Программа стартует в конце 2020 года.


Космические атомные часы для навигации в дальнем космосе НАСА планирует вывести на орбиту в 2016 году. Это устройство в теории должно работать как GPS для космических кораблей будущего. Космические часы обещают стать в 50 раз точнее, чем любые их аналоги на Земле.


InSight. Один из важных вопросов, связанных с Марсом — существует на нём геологическая активность или нет? Миссия InSight, планируемая на 2016 год, должна ответить на это с помощью марсохода с буром и сейсмометром.


Uranus orbiter. Человечество побывало на Уране и Нептуне лишь однажды, во время миссии Вояджера 2 в 1980 году, но это предполагается исправить в следующем десятилетии. Программа Uranus orbiter задумана как аналог полёта Кассини к Юпитеру. Проблемы состоят в финансировании и нехватке плутония для топлива. Тем не менее, запуск планируется в 2020 году с прибытием аппарата на Уран в 2030.


Europa Clipper. Благодаря миссии Вояджера в 1979 году мы узнали, что подо льдом одного из спутников Юпитера — Европе — находится огромный океан. А там где есть столько жидкой воды, возможна жизнь. Europa Clipper отправится в полёт в 2025 году, оборудованный мощным радаром, способным заглянуть глубоко под лёд Европы.


OSIRIS-REx. Астероид (101955) Бенну — не самый известный космический объект. Но по данным астрономов из Аризонского университета, у него есть вполне реальный шанс врезаться в Землю в районе 2200 года. Аппарат OSIRIS-REx отправится к Бенну в 2019 году, чтобы собрать образцы грунта и вернуться в 2023. Изучение полученных данных может помочь для предотвращении катастрофы в будущем.


LISA — совместный эксперимент НАСА и Европейского космического агентства по изучению гравитационных волн, испускаемых чёрными дырами и пульсарами. Измерения будут проводиться тремя аппаратами, расположенными на вершинах треугольника длиной в 5 млн. км. LISA Pathfinder, первый из трёх спутников, будет отправлен на орбиту в ноябре 2015 года, а полноценный запуск программы запланирован на 2034 год.


BepiColombo. Эта программа получила своё имя в честь итальянского математика XX века Джузеппе Коломбо, разработавшего теорию гравитационного манёвра. BepiColombo — проект космических агентств Европы и Японии, стартует в 2017 году с расчётным прибытием аппарата на орбиту Меркурия в 2024 году.


Космический телескоп имени Джеймса Уэбба должен будет выведен на орбиту в 2018 году, как замена знаменитому Хабблу. Площадью с теннисный корт и размером с четырёхэтажный дом, стоимостью почти в 9 миллиардов долларов, этот телескоп считается главной надеждой современной астрономии.

В основном миссии планируются в трёх направлениях — полёт на Марс в 2020 году, полёт к спутнику Юпитера Европе и, возможно, на орбиту Урана. Но ими список не ограничивается. Давайте взглянем на десять космических программ ближайшего будущего.

Любой, кто мечтает увидеть людей, путешествующих на Марс, будет рад услышать, что NASA рассказало о прогрессе над кораблем, который доставит нас туда. Ракета Space Launch System и капсула экипажа Orion «собираются вместе», сообщили в NASA. Агентство представило приблизительный график, по которому планирует увидеть два космических аппарата в небе. Беспилотный испытательный полет предварительно запланирован на 2020 год, а пилотируемая миссия вокруг Луны - на 2023 год.

NASA готовится покорять космос с SLS

В последние недели все глаза были прикованы к совместному предприятию SpaceX и NASA, когда космический аппарат успешно взлетел, пристыковался и окунулся в Атлантический океан. Все это дало надежду на то, что NASA получит-таки собственную систему запуска экипажа, готовую к пилотируемым полетам.

Crew Dragon, наряду с Boeing Starliner, даст NASA возможность отправлять астронавтов на Международную космическую станцию, когда это необходимо, но амбиции агентство в глубоком космосе потребуют чего-то гораздо более надежного.

Вот где пригодится система Space Launch System, или SLS. SLS - это большая ставка NASA на путешествия в дальний космос, а колоссальная ракета позволит агентству отправлять пилотируемые миссии на Луну и, в конечном счете, на другие планеты.

Ожидается, что испытание, которое состоится в июне, позволит проверить меры безопасности, применяемые к капсуле «Орион». Система отмены запуска, которая включается в случае серьезного отказа ракеты, уводит экипаж от гарантированной гибели и позволяет вернуться на Землю в целости и сохранности. Испытание не будет включать ракету SLS, однако «Орион» разместят на носителе, который поднимет капсулу на 10 000 метров, поэтому инженеры смогут проверить функции системы отмены.

Между тем, SLS все еще находится на этапе строительства, и инженеры в настоящее время строят структуру и адаптеры, которые позволят собрать все воедино. В NASA уверены, что дорогущая миссия складывается более чем удачно.

А как считаете вы? Подпишитесь на наш канал с новостями в Телеграме , будет еще много интересного по теме.

Первая половина 2000-х годов стала очень тяжелым временем для российской космонавтики - проблемы с финансированием привели к затоплению станции «Мир» в 2001 году, на обслуживание которой ежегодно требовалось около $200 млн. Проблемами с бюджетом частично объясняется и неудачный запуск аппарата «Фобос-Грунт», строительство которого началось в 2004 году.

В 2006 году Роскосмос принял космическую программу до 2015 года, которой явно недоставало амбициозности - документ предполагал лишь поддержание в рабочем состоянии существующей инфраструктуры. В тот же период началось строительство космодрома «Восточного» и состоялся первый полет ракеты «Союз-2.1в».

В год окончания космической программы Россия начала терять позиции на международном рынке космических запусков и спустя год уступила первенство США. В 2018 году Россия 16 орбитальных запусков, из которых один закончился неудачей. Лидером сферы стал Китай, запустив на орбиту 36 космических аппаратов, на втором месте оказались США с 30 удачными орбитальными запусками.

Снижение числа запусков частично связано с увеличением срока службы спутников, однако основной причиной является высокая стоимость запусков на российских ракетах по сравнению с предложениями конкурентов.

Пилотируемые программы

На данный момент у России всего две действующие пилотируемые программы - орбитальная станция МКС и космические корабли семейства «Союз МС ». Будущее обеих программ выглядит неопределенным.

У ракет-носителей семейства «Союз» появился серьезный конкурент - Falcon 9 от SpaceX, запуски спутников на которой обходятся вдвое дешевле, чем на российских ракетах. Например, выведение на орбиту килограмма груза на корабле компании Илона Маска обходится заказчику в $1,5 тыс., тогда как на «Союзе» - почти в $3 тыс.

Станция «Союз». Фото: NASA / Shutterstock

Другая проблема - авария ракеты-носителя «Союз-ФГ», которая произошла 11 октября 2018 года при попытке вывести на орбиту пилотируемый корабль «Союз МС-10». Система аварийного спасения позволила избежать гибели космонавтов, однако причина аварии оказалась достаточно болезненной для России - при отделении первой ступени внештатно сработал один из датчиков, который отвечает за разделение ступеней. Причиной сбоя могла быть только некачественная сборка ракеты-носителя - датчик повредили еще при установке.

Репутация «Союзов» пострадала и из-за дыры в обшивке корабля, причину появления которой окончательно установить так и не удалось. Комиссии, которая занималась расследованием инцидента, не удалось установить, было ли отверстие просверлено на Земле или в космосе.

Неясна и судьба МКС - крупнейшего космического проекта, в котором принимает участие Россия. Эксплуатация станции должна завершиться в 2024 году, а российская сторона неоднократно предлагала партнерам продлить его до 2030 года. Однако США, от финансирования которых критически зависит станция, отказались от этого предложения.

Сейчас США ежегодно вкладывают в МКС более $2,5 млрд, тогда как Россия - только $1,5 млрд, а европейское, японское и канадское космические агентства - менее $1 млрд вместе взятых. Уход США из проекта сделает его продолжение невозможным - вряд ли страны-участники будут готовы увеличить его финансирование на порядок.

Вероятность того, что НАСА потеряет интерес к МКС, увеличивает и проект по строительству окололунной станции Lunar Orbital Platform-Gateway, который только в 2019 году обойдется США в $2,7 млрд. Россия также примет участие в нем, но на правах подрядчика - и, возможно, разместит на ней свои модули.

У России также отсутствует независимый доступ в космос - стартовый комплекс для запуска ракет «Союз» на космодроме «Восточном» до сих пор отсутствует. Кроме того, запуски спутников на орбиты с низкими наклонениями (экваториальные и близкие к ним) требуют слишком много топлива при запуске с северных космодромов. Поэтому экономически выгодные космодромы, которые использует Россия, находятся на территории трех других государств - Казахстана («Байконур»), Франции («Куру») и США («Морской старт»).

Непилотируемые программы

Россия не имеет ни одного аппарата за пределами орбиты Земли - и это многое говорит о космической программе страны. Исследовательские миссии в дальнем и ближнем космосе выполняют США, Евросоюз, Япония, Китай и Индия - Россия далека от лидерства в этом направлении.

Сократить отставание в ближайшее время вряд ли удастся - бюджет Федеральной космической программы, принятый на 2016–2025 годы, сильно сократился за последнее время. На десять лет он составляет 1,406 трлн рублей - вместо 2,5 трлн изначально запланированных. Из них раздел «Фундаментальные космические исследования» (ФКИ) составляет всего 143,2 млрд рублей - то есть по 14 млрд рублей ежегодно. В него входит поддержка всех существующих исследовательских миссий, а также разработка новых, запуск которых намечен на ближайшие десятилетия.

Серьезной потерей для отрасли стало закрытие программы по изучению Солнца, которая могла совершить научную революцию в астрофизике - проекта «Интергелиозонд». Аппарат предназначался для изучения солнечной короны и полярных областей звезды, которые не видны с Земли. В феврале миссия была свернута из-за недостатка финансирования и технических сложностей, с которыми столкнулись инженеры. Все работы над проектом прекращены.

России не удалось запустить две миссии к Марсу - «Марс-96» и «Фобос-Грунт» - а также спутник «Фотон-М1».

2 апреля 2019 года Роскосмос объявил о прекращении миссии единственного в России орбитального телескопа - «Спектр-Р». Проработав 7,5 лет вместо трех запланированных, 10 января телескоп перестал выходить на связь с Землей. Инженеры пытались перезапустить аппарат четырьмя разными способами, однако ни одна из попыток не увенчалась успехом.

Запланированные запуски

Большим успехом для российской космической отрасли станет запуск «Федерации» - если он когда-нибудь состоится. Разработка космического корабля, способного выполнять полеты к Луне и находиться в составе космической станции до года, ведется с 2005 года. Однако сроки запуска аппарата многократно переносились - ожидается, что первый полет тяжелой версии «Федерации» к спутнику Земли состоится после 2025 года.

В 2020 году Роскосмос планирует сделать следующий шаг в части создания ракетных двигателей - тогда госкорпорация планирует провести первые испытания двигателя РД-0162 , который должен прийти на смену РД-180. Новый двигатель будет работать на метане, а в качестве окислителя будет использоваться сжиженный кислород. Двигатель сможет обеспечить тягу до 200 т. 1 апреля 2019 года работы над ним прекратились - глава Роскосмоса Дмитрий Рогозин заявил , что средства, необходимые для реализации проекта, пойдут на оплату долгов Центра имени Хруничева.

В промежутке до 2026 года Роскосмос намерен запустить несколько исследовательских миссий. Среди них - спектрометры «Спектр-ФГ» и «Спектр-М», которые должны прийти на смену вышедшему из строя единственному российскому орбитальному телескопу «Спектр-Р». В 2023 году Россия вместе с Европейским космическим агентством (ESA) планирует запустить луноходы «Луна-26» и «Луна-28» для исследования спутника Земли.

На 2025 год агентство запланировало миссию «Фобос-Грунт 2». В рамках проекта автономная космическая станция должна отправиться на спутник Марса, Фобос, и доставить на Землю образцы грунта. В 2020 году Роскосмос и ESA запустят программу «Марс-2020», которая займется поиском доказательств наличия или отсутствия жизни на Красной планете. Также Россия намерена отправить исследовательские аппараты на Меркурий , Юпитер и Венеру . Если на эти программы будет достаточно денег.

Космический туризм

Отправка туристов в космос - не новое направление для Роскосмоса. С 2001 по 2009 годы госкорпорация отправила на МКС семь туристов, но затем прекратила оказывать эту услугу из-за нерентабельности. Однако конкуренция со SpaceX заставила корпорацию вернуться к космическому туризму - и первый коммерческий полет состояться уже в 2020 году.

На МКС туристов доставит корабль «Союз МС-10», а поиском клиентов займется американская компания Space Adventures. Аналогичные услуги с 2025 года оказывать российская частная компания «КосмоКурс». Полет на построенном ею корабле на околоземную орбиту займет 15 минут, его стоимость составит $250 тыс. за пассажира.

Перед НАСА была поставлена ​​задача отправить людей на поверхность Луны и Марс. Это значит, что в следующем году мы можем ожидать тестовые запуски ракеты Space Launch System.

«Полет человека на Марс? Да это еще не скоро», - уверена, так ответит почти любой житель нашей планеты. Однако, будущее не так далеко, как кажется. На этой неделе космическое агентство NASA заявило, что ракета Space Launch System (SLS) и космическая капсула для экипажа «Орион» уже находятся на этапе совместной сборки. А это значит, что уже в следующем году мы можем ожидать тестовые запуски ракеты с капсулой пока без экипажа. Пилотируемый полет к Луне запланирован NASA на 2023 год.

Ракета Space Launch System для освоения дальнего космоса

Исследования космоса человеком

С тех пор, как завершились пилотируемые миссии с целью освоения космоса, прошло уже несколько десятков лет. Да, астронавты непрерывно работают на МКС, и США теперь даже готовы к самостоятельным запускам космонавтов на станцию с помощью ракеты SpaceX Falcon 9 и капсулы Dragon Crew. Но все же мы хотим нечто большее – мы хотим пилотируемых полетов на Луну и Марс.

Система космических запусков SLS

Для этих целей NASA разрабатывает и создает систему космических запусков SLS, которая включает в себя двухступенчатую ракету длиной более 100 метров и диаметром 8,4 метра и космический корабль «Орион». Ожидалось, что тестовый полет ракеты состоится еще в 2017 году, но в связи с проблемами с финансированием, первый беспилотный запуск был сдвинут на 2020 год, а отправка астронавтов на Луну теперь запланирована на 2023 год.


Безопасность пилотируемых миссий

Весь этот процесс кажется нам слишком долгим – опять задержки, опять сдвиги планов. Но не стоит забывать, что в отличие от запуска на Марс аппарата InSight, к которому тоже тщательно готовились, в пилотируемых миссиях цена ошибки слишком велика. Поэтому и требования, предъявляемые к безопасности космического аппарата, который будет доставлять экипаж, гораздо выше.

Так, например, капсула «Орион» должна будет вернуться на Землю в целости и сохранности даже если ракета окажется неисправной. В июне этого года будет проводиться проверка такой аварийной посадки. Ракета-носитель поднимет аппарат «Орион» на высоту в несколько тысяч метров, откуда он должен будет самостоятельно спуститься на Землю.

О полетах к другим планетам мечтали, фантазировали и пробовали представить как это будет еще в XIX и начале XX веков. Но только во второй половине XX века появились разработчики ракетной техники, которые перевели эти фантазии в проекты, технологии, изделия. Изучая материалы, относящиеся к тем разработкам, удивляешься насколько смелыми и в то же время продуманными, системными и перспективными были принимаемые разработчиками тех легендарных времен технические решения.

В начале 1960-х годов в Советском Союзе под руководством С.П. Королева началась разработка проектов пилотируемых космических кораблей, предназначавшиеся для многолетних космических экспедиций. Запуск корабля к Марсу даже был запланирован на 8 июня 1971 года (великое противостояние, когда планеты сближаются на наименьшее расстояние), возвращение - на 10 июля 1974 года.

В проектном отделе ОКБ-1 под руководством Михаила Клавдиевича Тихонравова, рассматривались различные варианты корабля для полета к Марсу. Проект назывался — Тяжелый Межпланетный Корабль (ТМК). Специалисты 9-го отдела ОКБ-1 расшифровывали, правда, аббревиатуру и по другому — Тихонравов Михаил Клавдиевич. Исследования по ТМК велись параллельно двумя группами конструкторов под руководством Глеба Юрьевича Максимова и, немного позже, Константина Петровича Феоктистова. Цель работы над проектами ТМК заключалась в разработке корабля, который обеспечивал бы пилотируемые перелеты с орбиты спутника Земли к планетам Солнечной системы с возможностью посадки и исследования этих планет. Первоначально предполагалось исследование Марса, а затем и Венеры.

Первые проекты нашей страны

Известно, что в эскизном проекте ракетно-космических систем на базе «Н-1», который Главный конструктор Сергей Павлович Королев утвердил 16 мая 1962 года, среди задач, которая ставилась перед этими системами, фигурируют и такие: «облет экипажем в два-три человека Марса, Венеры и возвращение на Землю; осуществление экспедиций на поверхность Марса и Венеры и выбор места для исследовательской базы; создание исследовательских баз на Марсе и осуществление транспортных связей между Землей и планетами».

Кажется, фантастика, но Сергей Павлович был уверен, что их удастся реализовать еще при жизни его поколения. Так начинались работы по марсианским проектам в ОКБ-1 с начала 60-х годов.

Первые прикидки по пилотируемой экспедиции на Марс Главный конструктор поручил сделать коллективу знаменитого потом отдела №9, возглавляемого Михаилом Клавдиевичем Тихонравовым еще в 1959 году.

Эскизный проект, разработанный в группе, предусматривал создание на околоземной орбите из отдельных блоков гигантского «Марсианского пилотируемого комплекса» («МПК»). Его вес оценивался в 1600 тонн. Предполагалось использовать ЖРД на жидком кислороде и керосине. Для выведения всей этой массы на орбиту предполагалось осуществить от 20 до 24 пусков сверхтяжелых ракет-носителей. Экспедиция была рассчитана на 30 месяцев, при этом около года планировалось посвятить непосредственному изучению планеты - с орбиты спутника и на ее поверхности. Возвращаемый на Землю корабль должен был иметь массу 15 тонн. Прежде чем осуществить экспедицию, должен был состояться испытательный полет корабля (несколько меньших размеров), которому предстояло облететь Марс, изучив его с определенного расстояния. Очень скоро стало ясно, что проект в ближайшем будущем реализовать не удастся. Слишком много было неясного и слишком высокие требования к технике были в нем заложены.

После принятия 3 августа 1964 года секретного постановления ЦК КПСС и Совета Министров СССР «О работах по исследованию Луны и космического пространства», в котором предписывалось осуществить «высадку экспедиции на поверхность Луны с последующим возвращением и посадкой на Землю» отдел №9 ОКБ-1, возглавляемый Михаилом Клавдиевичем Тихонравовым, было переориентировано работу над лунным проектом , который, представлял собой космический «поезд», состоявший из кораблей 7К («Союз-А»), 9К («Союз-Б») и 11К («Союз-В»).

Проект Глеба Юрьевича Максимова

Этот портрет Глеба Максимова выставлен в Музее астронавтики Национального управления по аэронавтике и исследованию космического пространства (США)

Проект группы Г.Ю.Максимова предполагал быструю реализацию программы доступными средствами, чтобы успеть до ближайшего сближения с Марсом в 1971 году. Для этого предполагалось создать сравнительно простой по конструкции и небольшой по массе космический корабль с экипажем из трех человек. Проект предусматривал облет Марса с исследованием на пролетной траектории и без посадки на его поверхность или без выхода на околомарсианскую орбиту с последующим возвращением корабля в район Земли. Коррекцией траектории полета, необходимо было очень точно вывести корабль к Земле, где от него должен был отделиться спускаемый аппарат, входящий в атмосферу со скоростью, превышающей вторую космическую, и выполняющий управляемый спуск и парашютную посадку.Конструктивно этот вариант ТМК представлял собой цилиндрическую кабину экипажа с приборно-агрегатным отсеком, ДУ для коррекции траектории и панелями солнечных батарей на внешней стороне корабля. Не имея соответствующих исходных данных о надежности огромной ракеты-носителя H-1 , проектанты предусматривали выведение межпланетного корабля на околоземную орбиту в двух вариантах: с космонавтами на борту или с последующей «подсадкой» экипажа на ТМК. В последнем случае беспилотный межпланетный корабль с разгонным блоком выводился на орбиту с помощью H-1 , а экипаж доставлялся к нему в одном из кораблей, разрабатываемых в тот период в ОКБ-1. После пересадки космонавтов производился старт ТМК с разгонным блоком с орбиты в направлении к Марсу.

Габариты «ТМК»: полная длина - 12 метров, максимальный диаметр - 6 метров, полная масса - 75 тонн. После трехлетнего путешествия, 10 июля 1974 года, экипаж вернулся бы на Землю.

Позже, когда в ОКБ-1 приступили к реальному планированию экспедиции, разработки группы Максимова легли в основу проекта «МАВР», предусматривавшего полет к Марсу с промежуточным облетом Венеры.

Тяжелый Межпланетный Корабль (ТМК) в последней редакции

Проект Константина Петровича Феоктистова

Константин Петрович Феоктистов

На Марс по Владимиру Челомею

Впервые ОКБ-52 обратилось к марсианской теме в начале 60-х. По личной инициативе Владимира Николаевича Челомея было разработано целое семейство беспилотных космопланов, которые могли быть использованы для изучения Марса. Космопланы Челомея строились по модульному принципу. Обычно они состояли из следующих модулей: разгонный блок на ЖРД, блок атомного реактора, связка маршевых ионных двигателей и собственно космоплан с возвращаемой частью.

Сам космоплан представлял собой аппарат конической формы, находящийся в теплозащитном контейнере, с лепестковыми щитками, обеспечивающими маневрирование в атмосфере. При входе в атмосферу Марса космоплан тормозился до приемлемой скорости, после чего теплозащитный контейнер сбрасывался, разворачивались крылья, включался турбореактивный двигатель и начинался полет аппарата над красной планетой.

Всего в рамках «Темы К» было разработано два варианта космопланов для полета к Марсу и Венере. В качестве средства для выведения комплекса, на околоземную орбиту была выбрана баллистическая ракета «УР-200К» грузоподъемностью 2 тонны.

В конце 60-х выдающиеся успехи ракет «УР-500К» («Протон-К») воодушевили конструкторов ОКБ-52 (ЦКБМ) на альтернативный проект пилотируемой экспедиции к Марсу. Этот вариант опирался на «лунную» ракету «УР-700»

Согласно проекту старт к Марсу был бы в

озможен уже в 1974 году. Корабль выводился на низкую околоземную орбиту модифицированной ракетой «УР-700М». Экипаж из двух космонавтов в марсианском корабле «МК-700» провел бы два года в полете к Марсу и затем вернулся бы на Землю в капсуле, специально разработанной для транспортного корабля снабжения («ТКС»).

Габариты корабля «МК-700»: полная длина - 140 метров, максимальный диаметр - 12,5 метра, полная масса - 140 тонн. В качестве маршевого двигателя для межпланетного корабля планировалос

ь использовать ядерный ракетный двигатель «РД-0410», разрабатываемый в то время.

О высадке космонавтов на Марс конструкторы бюро Челомея пока не думали. Идея снабдить «МК-700» посадочным модулем типа «ЛК-700» возникла позже, когда в ОКБ-52 приступили к предэскизному проектированию «УР-900».

Эта гигантская сверхтяжелая ракета-носитель (полная длина - 90 метров, максимальный диаметр - 28 метров, стартовая масса - 8000 тонн) на двигателях «РД-254» конструкции Глушко могла вывести на опорную околоземную орбиту массу до 240 тонн.

Однако предложение Челомея не было принято, в том числе и по финансовым соображениям.

Этапы эволюции марсианского экспедиционного комплекса в РКК «Энергия»

Что же сейчас? Наверно наиболее точно сказал об этом генеральный конструктор РКК «Энергия» Евгений АнатольевичМикрин:

«Марсианская программа — это путеводная звезда пилотируемой космонавтики. Однако для этого надо пройти определённый путь. Он требует существенных усовершенствований для повышения энергомассовой эффективности, повышения надёжности и обеспечения большей автономности.

Необходима система обеспечения жизнедеятельности с почти замкнутым циклом, радиационная защита для долгого полёта, необходимы отказоустойчивые ремонтнопригодные системы, требующие минимального объёма запасных частей, инструментов и т.д.

Поэтому в рамках основ государственной политики Российской Федерации в области космической деятельности начать отработку этих технологий предлагается на международной космической станции и при реализации Лунной программы, которая включает в себя: — запуск автоматических космических аппаратов «Луна-25″,»Луна-26″,»Луна-27», «Луна‑28″, создание пилотируемого корабля для полёта на Луну, создание ракеты-носителя сверхтяжелого класса, пилотируемый полёт в окололунное пространство с высадкой на поверхность Луны с использованием лунного взлётно-посадочного комплекса.

Что касается марсианских экспедиций, то, по моему мнению, они будут реальны не в 20-х и, даже, не в 30-х годах. Скорее в 40-х. Совершенно очевидно, что марсианская программа слишком велика для одной, даже очень богатой страны. Скорее всего – это будет международный проект.»

«Марсианский проект» Вернера фон Брауна

(из книги Антона Первушина «Битва за звезды»)

В Третьем рейхе можно было заниматься ракетостроением, но нельзя было мечтать о космических полетах.

Вилли Лей рассказывает следующую историю:

«Рано утром 15 марта 1944 года Дорнбергеру из Берхтесгадена (резиденция Гитлера) позвонил генерал Буле. Дорнбергеру было приказано немедленно явиться в Берхтесгаден к фельдмаршалу Кейтелю. Когда он туда прибыл, Буле сообщил ему, что доктор фон Браун и инженеры Клаус Ридель и Гельмут Греттруп арестованы гестапо. На следующий день Кейтель разъяснил Дорнбергеру, что арестованные, вероятно, будут казнены, так как обвиняются в саботаже разработки проекта ракеты А-4. Был якобы подслушан их разговор о том, что работа над ракетой А-4 ведется ими по принуждению, тогда как их заветной целью являются межпланетные путешествия.

Арестованные были освобождены благодаря заявлению Дорнбергера под присягой, что эти люди необходимы для завершения работ над проектом ракеты А-4».

Эту же историю, но своими словами пересказывает и Альберт Шпеер. Значит, было. И в общем-то гестапо понять можно: в то время как весь народ, не покладая рук, трудится во имя великой победы, эти, с позволения сказать, интеллигенты собираются удрать на Марс.

Вернер фон Браун предупреждению внял и больше на тему полетов к другим мирам не высказывался. Но как известно, бороду сбрить можно, а вот мысли куда девать?..

Оказавшись в США и вдохнув полной грудью воздух свободы, фон Браун начал выступать со своими по-настоящему космическими проектами.

Первые заметки были им озвучены в виде докладов на Первом симпозиуме по проблемам космического полета, проходившем 12 октября 1950 года в Планетарии Нью-Йорка. При этом фон Браун утверждал, что обдумывает свой проект давно – с середины войны. Уже в 1946 году он делал для армии США расчет применимости баллистической ракеты «А-12» для вывода полезных грузов (в том числе обитаемой капсулы с космонавтом) на орбитальную высоту. Впоследствии эти расчеты вылились в проект космической системы под условным наименованием «Von Braun» («Фон Браун»), состоявшую из двухступенчатой ракеты-носителя и орбитального самолета.

22 марта и 25 октября 1952 года материалы симпозиума под общим заголовком «Скоро человек победит космос» были изданы в популярном американском журнале «Кольерс» и привлекли внимание широкой публики во многом благодаря прекрасным иллюстрациям Чеслея Бонестелла, на которые до сих пор опираются художники и кинорежиссеры для иллюстрации фантастических идей, выдвигаемых специалистами по космонавтике и ракетной технике. По утверждению самих американцев, эта публикация была важнейшим шагом в деле популяризации космических полетов на земле Америки.

Итак, что же за проект предлагал Вернер фон Браун?

Освоение космоса, по фон Брауну, следовало начать со строительства тороидальной орбитальной станции, которой будет придано вращение для создания внутри искусственной силы тяжести. Станцию, на которой будут постоянно жить 80 человек, планировалось использовать или как заатмосферную обсерваторию, или как ракетно-ядерную базу для нанесения внезапных ударов из космоса. Конструктор оценивал ее стоимость в 4 миллиарда долларов.

Станция нужна еще и для того, чтобы оказать поддержку лунной экспедиции, которая должна состояться не позднее 1977 года. Для того, чтобы экспедиция себя оправдала, на Луну следует отправить как минимум команду из 50 астронавтов (?!), которые пробудут на поверхности естественного спутника Земли по меньшей мере шести недель. Вся эта толпа исследователей высадится на поверхность Луны на трех посадочных модулях, развернет базу и начнет активно изучать окрестности, используя три больших гусеничных вездехода.

Понятно, что для обеспечения столь масштабной экспедиции потребуется соответствующий «лунный корабль». Этот корабль следует начинать собирать на орбите за полгода до отправки экспедиции. Каждый день два грузовых корабля многоразового использования «Saturn Shuttle» (по внешнему виду очень похожих на старую добрую ракету «A-4b», только сильно увеличенную в размерах) должны выводить не менее 70 т грузов на орбиту рядом со станцией, где и будет собираться «лунник». В конце концов должен получиться чудовищно огромный корабль весом в 4370 т, длиной 49 м, с максимальным диаметром корпуса 33,5 м. Всю эту махину должны были сдвинуть с орбиты 30 мощных двигателей. На самом верху корабля находился сферический модуль с экипажем диаметром 10 м. Внутреннее помещение модуля разбито на пять палуб: мостик, центр управления системами корабля, каюты, хранилище (трюм) и блок спецоборудования (СЖО и аккумуляторные батареи).

Несмотря на масштабность проекта лунной экспедиции, Вернер фон Браун оценивал ее стоимость весьма скромно: в 300 миллионов долларов.

Еще через два года, в выпуске журнала «Кольерс» от 30 апреля 1954 года, был опубликован расширенный проект освоения космического пространства, включающий и экспедицию на Марс, информация о которой в предыдущих номерах была довольно скудна. Как выяснилось, разница между «лунным проектом» и «марсианским проектом» состоит только в размерах корабля.

Таковы были планы «ракетного барона» Вернера фон Брауна в американский период его жизни. Планы эти воплощены не были. Нужно сказать, что в начале ему откровенно не доверяли и ему приходилось участвовать в становлении американской космической отрасли — запускать первые американские спутники, астронавтов-одиночек. Впрочем, все же, ему удалось реализовать проект суперракеты «Сатурн-5», принесшую его новой родине пальму первенства в Лунной гонке.

ПРОЕКТЫ РФ НОВОГО ВРЕМЕНИ

Дозвуковой аналог «Спирали» МИГ105.11.

В новое время космическая отрасль ставила перед собой гораздо боле скромные задачи. В 2000-м году РКК «Энергия» начала проектирование многоцелевого космического комплекса «Клипер». Этот многоразовый космический аппарат, отдаленный потомок проекта «Спираль» Г.И. Лозино-Лозинского, предполагалось использовать для решения самых разнообразных задач: доставка груза, эвакуация экипажа космической станции, космический туризм, полеты на другие планеты.

На проект возлагались определенные надежды. К сожалению из-за отсутствия финансирования в 2006-м году проект был закрыт. Однако технологии, разработанные в рамках проекта «Клипер», предполагается использовать для проектирования «Перспективной пилотируемой транспортной системы» (ППТС), также известной как проект «Русь».

Крылатый вариант «Клипера» в орбитальном полете. Рисунок веб-мастера на основе 3D-модели «Клипера»©Вадим Лукашевич

Именно ППТС — названный «Федерация», как полагают российские специалисты, будет суждено стать отечественной космической системой нового поколения, способной заменить надежные, постоянно модернизируемые, но все-таки устаревающие «Союзы» и «Прогрессы».

Как и в случае с «Клипером», разработкой космического корабля занимается РКК «Энергия». Базовой модификацией комплекса станет «Пилотируемый транспортный корабль нового поколения» (ПТК НК), который предназначен для доставки людей и грузов на находящиеся на околоземной орбите орбитальные станции и к Луне. Для «Федерации» принято модульное построение базового корабля в виде функционально законченных элементов - возвращаемого аппарата и двигательного отсека. Корабль будет бескрылым, с многоразовой возвращаемой частью усечённо-конической формы и одноразовым цилиндрическим агрегатно-двигательным отсеком, и будет широко использовать системы, проектировавшиеся в РКК «Энергия» для «Клипера» (многоцелевого пилотируемого космического корабля). Максимальный экипаж «Федерации» составит 6 человек (при полётах к Луне – до 4 человек).

Общие технические характеристики:
Масса доставляемого на орбиту груза - 500 кг, масса возвращаемого на Землю груза - 500 кг и более, при меньшем экипаже. Длина корабля - 6,1 м, максимальный диаметр корпуса - 4,4 м, масса при околоземных орбитальных полётах - 12 т (при полётах на окололунную орбиту - 16,5 т), масса возвращаемой части - 4,23 т (включая системы мягкой посадки - 7,77 т), Объём герметичного отсека - 18 м³. Длительность автономного полёта корабля - до 30 дней.

Новые конструкционные материалы, с улучшенными прочностными характеристиками, и углепластики снизят массу конструкции космического корабля на 20-30 % и позволят продлить срок его эксплуатации. Бытовые отсеки будут просто пристыковываться, в зависимости от той задачи, которая будет стоять перед «Федерацией».

Макет ППТС на выставке МАКС-2009

НОВЫЕ КОСМИЧЕСКИЕ КОРАБЛИ США

В июле 2011-го года американский президент Барак Обама заявил: полет на Марс является новой и, насколько можно полагать, главной целью американских астронавтов на ближайшие десятилетия. Одной из программ, осуществляемых NASA в рамках освоения Луны и полета на Марс, стала масштабная космическая программа «Созвездие».

В её основе — создание нового пилотируемого космического корабля «Орион», ракет-носителей «Арес-1» и «Арес-5», а также лунного модуля «Альтаир». Несмотря на то что в 2010-м году правительство США приняло решение о сворачивании программы «Созвездие», NASA получило возможность продолжить разработку «Ориона».

Первый беспилотный испытательный полет корабля планировалось реализовать в 2014-м году. Предполагалось, что во время полета аппарат удалится на шесть тысяч километров от Земли. Это примерно в пятнадцать раз дальше, чем находится МКС. После тестового полета корабль должен взять курс на Землю. В атмосферу новый аппарат сможет входить со скоростью 32 тыс. км/ч. По этому показателю «Орион» на полторы тысячи километров превосходит легендарный «Аполло».

Первый беспилотный экспериментальный полет «Ориона» призван продемонстрировать его потенциальные возможности. Испытание корабля должно стать важным шагом к осуществлению его пилотируемого запуска, который намечен на 2021-й год.

Согласно планам NASA, в роли ракет-носителей «Ориона» будут выступать «Дельта-4» и «Атлас-5». От разработки «Арес» было решено отказаться. Кроме того, для освоения дальнего космоса американцы проектируют новую сверхтяжёлую ракету-носитель SLS.

«Орион» — корабль частично многоразового использования и концептуально находится ближе к аппарату «Союз», чем к космическому челноку «шаттл». Частично многоразовыми являются большинство перспективных космических кораблей. Такая концепция предполагает, что после осуществления посадки на поверхность Земли жилую капсулу корабля можно будет повторно использовать для запуска в космическое пространство.

Это позволяет совместить функциональную практичность многоразовых космических кораблей с экономичностью эксплуатации аппаратов типа «Союз» или «Аполло». Такое решение- переходный этап. Вероятно, в отдаленном будущем все космические аппараты станут многоразовыми. Так что американский «Спейс шаттл» и советский «Буран» в каком-то смысле опередили своё время.

«Орион» – многоцелевой капсульный частично многоразовый пилотируемый космический корабль США, разрабатываемый с середины 2000-х годов в рамках программы «Созвездие»©NASA

В настоящее время по заказу NASA, кроме проекта «Орион», сразу несколько частных компаний разрабатывают собственные проекты космических кораблей, призванных заменить используемые сегодня аппараты.

В рамках «Программы развития коммерческих пилотируемых кораблей» (CCDev) компания Boeing разрабатывает частично многоразовый пилотируемый космический корабль CST-100. Аппарат предназначен для совершения коротких путешествий на околоземную орбиту. Его главной задачей станет доставка экипажа и грузов на МКС.

Экипаж корабля может составлять до семи человек. При этом, во время проектирования CST-100 особое внимание было уделено комфорту астронавтов. Жилое пространство аппарата куда обширней кораблей прошлого поколения. Запуск его, вероятно, будет производиться с помощью ракет-носителей «Атлас», «Дельта» или «Фалькон».

При этом, «Атлас-5» является наиболее подходящим вариантом. Посадка корабля будет осуществляться с помощью парашюта и воздушных подушек. Согласно планам компании Boeing, в 2015-м году CST-100 ждет серия испытательных запусков. Первые два полета будут беспилотными. Главная их задача- вывод аппарата на орбиту и тестирование систем безопасности.

Во время третьего полета планируется пилотируемая стыковка с МКС. В случае успеха испытаний CST-100 очень скоро будет способен прийти на замену российским кораблям «Союз» и «Прогресс», монопольно осуществляющим пилотируемые полеты на Международную космическую станцию.

CST-100 – пилотируемый транспортный космический корабль©Boeing

Ещё одним частным кораблем, который будет выполнять доставку грузов и экипажа на МКС, станет аппарат, разработанный компаний SpaceX, входящей в состав Sierra Nevada Corporation. Частично многоразовый моноблочный корабль «Дракон» разработан по программе NASA «Коммерческая орбитальная транспортировка» (COTS).

Планируется построить три его модификации: пилотируемую, грузовую и автономную. Экипаж пилотируемого корабля, как и в случае с CST-100, может составлять семь человек. В грузовой модификации корабль будет брать на борт четыре человека и две с половиной тонны груза.

А в будущем «Дракон» хотят использовать и для полетов на Красную планету. Для чего разработают специальную версию корабля — «Рэд драгон». Согласно планам американского космического руководства, беспилотный полет аппарата на Марс состоится в 2018-м году, а первый испытательный пилотируемый полет корабля США рассчитывают осуществить уже через несколько лет.

Одна из особенностей «Дракона» — его многоразовость. После осуществления полета часть энергетических систем и топливные баки будут спускаться на Землю вместе с жилой капсулой корабля и могут быть вновь использованы для космических полетов. Эта конструктивная способность выгодно отличает новый корабль от большей части перспективных разработок.

В ближайшем будущем «Дракон» и CST-100 будут дополнять друг друга и выступать в роли «подстраховки». В случае, если один тип корабля по какой-то причине не сможет выполнять поставленные перед ним задачи, другой возьмет на себя часть его работы.

Dragon SpaceX – частный транспортный космический корабль (КК) компании SpaceX, разработанный по заказу NASA в рамках программы «Коммерческая орбитальная транспортировка» (COTS), предназначенный для доставки полезного груза и, в перспективе, людей на МКС©SpaceX

«Дракон» на орбиту вывели впервые в 2010-м году. Беспилотный испытательный полет завершился успешно, и уже через несколько лет, а именно 25 мая 2012-го года, аппарат пристыковался к МКС. На корабле к тому моменту не было системы автоматической стыковки, и для её осуществления пришлось использовать манипулятор космической станции.

Этот полет рассматривался в качестве первой в истории стыковки частного корабля к Международной космической станции. Сразу оговоримся: едва ли «Дракон» и ряд других космических кораблей, разрабатываемых частными компаниями, можно назвать частными в полном смысле слова. Например, на разработку «Дракона» NASA выделило 1,5 млрд. долларов.

Другие частные проекты также получают финансовую поддержку со стороны NASA. Поэтому речь идет не столько о коммерциализации космоса, сколько о новой стратегии развития космической отрасли, основанной на кооперации государства и частного капитала.

Некогда секретные космические технологии, ранее доступные лишь государству, отныне — достояние ряда частных компаний, вовлеченных в сферу космонавтики. Обстоятельство это - само по себе мощный стимул для роста технологических возможностей частных компаний. К тому же такой подход позволил устроить в частную сферу большое количество высококлассных специалистов космической отрасли, уволенных ранее государством в связи с закрытием программы «Space Shuttle».

Весьма интересым представляется проект частной компании SpaceDev, получивший название «Dream Chaser». В его разработке также принимали участие двенадцать партнёров компании, три американских университета и семь центров NASA.

Концепт многоразового пилотируемого космического корабля Dream Chaser, разрабатываемый американской компанией SpaceDev, подразделением Sierra Nevada Corporation©SpaceDev

Этот корабль сильно отличается от всех остальных перспективных космических разработок. Многоразовый «Dream Chaser» внешне напоминает миниатюрный «Space Shuttle» и способен осуществлять посадку, как обыкновенный самолет. Основные задачи корабля схожи с задачами «Дракона» и CST-100. Аппарат послужит для доставки грузов и экипажа (до тех же семи человек) на низкую околоземную орбиту, куда он будет выводиться с помощью ракеты-носителя «Атлас-5».

Проект «Dream Chaser» создается на базе американской разработки 1990-х годов – орбитального самолета HL-20. Проект последнего стал определенным аналогом советского проекта по созданию орбитальной системы «Спираль».

В последнее время все больше разговоров ходит вокруг этого уникального проекта СССР, который может сейчас внести переполох в современные военные доктрины.

«Спираль» — это космическая система, состоящая из орбитального самолета-истребителя и гиперзвукового самолета-разгонщика, выводящего первого на орбиту. Температура поверхности носовой части фюзеляжа на разных стадиях спуска с орбиты могла достигать 1600 °C. Предполагалось, что орбитальный самолет, будучи очень быстро выведен на орбиту, сможет выполнять различные задачи, в том числе, выборочно сбивать военные спутники противника, или даже забрать с собой некоторые из них.

В январе 2014 года, в рамках участия в программе Commercial Crew Development , было объявлено, что 1 ноября 2016 года запланирован старт для первого испытательного орбитального полёта в беспилотном режиме, в результате дальнейшего проигрыша в финансировании запуск не состоялся.

В сентябре 2014 года проект не был выбран на получение финансирования НАСА в следующем этапе программы Commercial Crew Development от CCiCAP к CCtCAP, хотя предложенная цена 2,55 миллиарда долларов была меньше цены конкурента Боинга в 3,01 млрд долларов. Были выбраны капсульные корабли CST-100 и Dragon V2 .

После проигрыша в продолжении получения финансирования НАСА по пилотируемой программе Commercial Crew Development, Sierra Nevada Corporation заявила, что планирует участвовать в программе по доставке грузов на МКС CRS2 , которая затрагивает период с 2018 по 2024 год.

В октябре 2015 года было объявлено о новой дате следующего теста в серии атмосферных тестов для восстановленного аппарата, пострадавшего после аварии в 2013 году. Начало тестов планировалось на первый квартал 2016 года. Предполагалось от 3 до 6 тестовых полётов, со сбросом корабля с различных высот при помощи вертолёта и последующим приземлением. Во избежание проблем с выходом шасси, к пневматическому приводу добавлен механический. Также начата сборка орбитальной версии аппарата.

14 января 2016 года NASA выбрала компанию Sierra Nevada Corporation с их грузовой версией корабля Dream Chaser в качестве одного из трёх победителей конкурса по второй фазе программы снабжения Международной космической станции Commercial Resupply Services 2 (CRS2). Компании гарантируются как минимум 6 грузовых миссий к МКС в период с 2019 по 2024 года.

28 июня 2016 года Управление по вопросам космического пространства ООН (UNOOSA) и Sierra Nevada Corporation подписали Меморандум о взаимопонимании совместной работы чтобы обеспечить доступные возможности для государств-членов Организации Объединенных Наций для проведения экспериментов в космосе.

27 сентября 2016 года Управление по вопросам космического пространства ООН вместе с Sierra Nevada Corporation на Международном конгрессе по астронавтике объявили подробности первой в истории специализированной космической миссии Организации Объединенных Наций которая должна состояться в 2021 году и позволит государствам - членам Организации Объединенных Наций принять участие в 14-дневном полете Dream Chaser на низкой околоземной орбите (НОО) для экспериментов и изучения микрогравитации.

В январе 2017 лётный прототип был доставлен в Лётно-исследовательский центр имени Армстронга НАСА расположенный на территории авиационной базы ВВС США Эдвардс для проведения испытаний.

11 ноября 2017 года был произведен второй тест планирования и посадки. Лётный прототип был сброшен с вертолета c высоты 3.8 км для тестирования планирования и посадки на полосу авиабазы Эдвардс . Посадка произведена успешно

Все три аппарата имеют схожий внешний вид и предполагаемые функциональные возможности. Отсюда вытекает вполне закономерный вопрос. Стоило ли Советскому Союзу сворачивать наполовину готовую авиационно-космическую систему «Спираль»?

Лунные программы

Россия

Возобновление исследования Луны, прерванного в 1976 году, по Российской лунной программе запланировано на 2019 год. В проекте программы исследований Солнечной системы до 2025 года, подготовленном учеными РАН , исследование Луны названо первоочередной задачей. Все эти запуски КА планируется провести с космодрома «Восточный» . (Даты указаны по состоянию на август 2016 года). По сообщениям пресс-службы «Роскосмоса», все работы по проекту «Луна-Грунт» реализуются в соответствии с графиком:

ПА») - основной и резервный посадочные зонды

На втором этапе - после 2020 года ‑ на поверхности Луны будут работать новые луноходы - «Луноход‑3» и «Луноход‑4». Они будут отличаться от советских луноходов значительно меньшими размерами и при этом большим ресурсом. Планируется, что новые луноходы смогут работать в полярных районах Луны до пяти лет и удаляться от места посадки на расстояние до 30 километров. Планируется, что в 2023 году на Луну отправится спускаемый аппарат с возвратной ракетой, который сядет поблизости от «Лунохода‑3» и «Лунохода‑4». Затем шесть‑семь капсул с лунным веществом будут перегружены с луноходов в возвратную ракету, которая вернет их на Землю.
Оставшиеся на поверхности Луны луноходы и посадочная станция составят первые элементы космической инфраструктуры лунного полигона с перспективой развертывания в этом районе будущей российской лунной базы. Обитаемые исследовательские станции на Луне могут быть созданы в 2030-2040 годах.
Китай

Китайская программа зондирования Луны «Чанъэ» включает три этапа: облет вокруг спутника Земли («Чанъэ‑1» и «Чанъэ‑2»), посадка на Луну («Чанъэ‑3» и «Чанъэ‑4») и возвращение с Луны на Землю («Чанъэ‑5» и «Чанъэ‑6»).
Первый лунный спутник «Чанъэ‑1» был запущен в 2007 году и работал до 2009 года. Собранные им данные позволили китайским ученым создать, в частности, первую тепловую карту Луны. Спутник зондирования Луны «Чанъэ‑2» был запущен 1 октября 2010 года. Одной из основных задач спутника стал сбор необходимых сведений для осуществления успешной посадки «Чанъэ‑3» и «Чанъэ‑4» на поверхность Луны. Завершив работу по передаче снимков высокого разрешения лунной поверхности, 13 декабря 2012 года «Чанъэ‑2» пролетел мимо астероида Таутатис и сделал его снимки.
По информации представителя Центра космической науки и прикладных исследований Китайской академии наук, Китай намерен осуществить первую посадку национального космического аппарата на Луну в 2013 году. Запуск спутника «Чанъэ‑5», с которого начнется третий этап китайской лунной программы и которому предстоит доставить китайским ученым образцы лунного грунта, ожидается в 2017 году, а к 2030 году планируется отправить на спутник Земли первых китайских космонавтов (тайкунавтов).

США

Новую космическую стратегию США президент Джордж Буш-младший провозгласил в 2004 году. В соответствии с программой Constellation («Созвездие»), до 2020 года США должны были доставить астронавтов на Луну, а затем отправить миссию на Марс.
Назначенная президентом Обамой комиссия для экспертизы космической стратегии пришла к выводу, что «Созвездие» очень дорогостояще (3 миллиарда долларов дополнительно в год к общему бюджету программы, выросшему с 27 до 44 миллиардов долларов), использует устаревшие технологии, не сможет обеспечить доставку людей на Луну даже к 2028 году.
В 2010 году Обама объявил о закрытии программы. Главной задачей будущих американских пилотируемых кораблей «Орион», которые были частью лунной программы «Созвездие», станет исследование пространства за пределами околоземной орбиты . В частности, США планируют пилотируемую миссию по исследованию астероида (2025 год) и полет на Марс в 2030‑е годы.

Европейское космическое агентство (ЕКА)

Первым европейским аппаратом, вышедшим на орбиту Луны, стал запущенный ЕКА в 2003 году экспериментальный аппарат SMART‑1, который завершил свою миссию в 2006 году. За три года работы аппарат передал на Землю много информации о лунной поверхности, а также провел картографию Луны с высоким разрешением.
ЕКА работала над программой исследования солнечной системы, названной «Аврора», по которой планировалось отправить европейцев на Луну и Марс. Финансовый кризис ударил по планам ЕКА. Ряд стран Евросоюза, входящих в Агентство, пошел на существенное сокращение своего финансирования, в частности, программы Lunar Lander - проекта космического полета с посадкой на поверхность Луны. Планировалось, что в 2019 году или чуть позже на южном полюсе Луны произведет посадку автоматическая станция ЕКА. Стоимость проекта Lunar Lander оценивалась в полмиллиарда евро. После того, как в 2012 году о сокращении финансирования этого проекта заявили Великобритания, Германия, Испания и Италия, от Lunar Lander пришлось отказаться .
ЕКА намерено продолжить исследование Луны совместно с Россией, имея в виду, что долгосрочной задачей сотрудничества будет миссия по доставке на Землю образцов грунта из полярных регионов спутника. Эта цель может быть достигнута в рамках миссии российского посадочного аппарата «Луна‑Ресурс» и миссии LPSR (Lunar Polar Sample Return) по доставке образцов грунта.

Индия

Первый индийский лунный зонд «Чандраян‑1» (Chandrayaan-1) был запущен с космодрома имени Сатиша Дхавана в октябре 2008 года. Космический аппарат успел проработать на орбите Луны 312 дней, совершив 3,4 тысячи витков вокруг нее. Он передал на Землю тысячи фотографий поверхности и данные о химическом составе Луны. 29 августа 2009 года «Чандраян» передал на Землю последний пакет данных, после чего связь с ним прервалась.
Продолжением индийской лунной программы является проект «Чандраян‑2» , в подготовке которого принимает участие Российское коcмическое агентство. Станция «Чандраян‑2» отправится к спутнику Земли в 2014 году.
В отдаленном будущем (после 2025‑2030 года) планируются пилотируемые полёты на Луну в кооперации с другими странами или даже самостоятельно.

Япония

Начало орбитальных исследований Луны Японией было положено запуском в 2007 году лунного зонда «Кагуя» (Kaguya) , который изучал гравитационные аномалии спутника, составил точную топографическую карту, исследовал следы вулканической активности, фотографировал приполярные кратеры. Зонд завершил свою миссию в 2009 году.
Японская программа освоения Луны предполагает строительство научно‑исследовательской базы и запуск робота.
Стратегия разведки лунной поверхности разделена на два этапа. До 2015 года на Луну отправят колесный робот. Он будет передавать видеоизображения и расшифровывать внутреннее строение Луны при помощи сейсмографической аппаратуры.
В течение следующих пяти лет на южном полюсе Луны будет построена базовая исследовательская станция, с помощью которой предполагается вести разведку и изучение поверхности в радиусе 100 километров. Станция сможет самостоятельно вырабатывать электроэнергию, а также брать пробы грунта, особо ценные экземпляры которого будут отправлены на Землю.
По информации японских СМИ, бюджет всей стратегии лунных исследований до 2020 года составит 200 миллиардов иен (2,2 миллиарда долларов).

Израиль

В конце 2011 года в Израиле был дан старт разработке первого в истории страны лунохода . Проект должен не менее чем на 90% финансироваться из негосударственных источников. Как сообщалось, вес первого израильского лунохода составит 90 килограммов, а габариты - 80 на 80 сантиметров.
Создатели первого израильского лунохода рассматривают возможность использования российской ракеты‑носителя для вывода в 2015 году своего аппарата в космос.