Как определяется возможная валентность атома элемента. Что такое валентность атома. Современные представления о валентности

На уроках химии вы уже познакомились с понятием валентности химических элементов. Мы собрали в одном месте всю полезную информацию по этому вопросу. Используйте ее, когда будете готовиться к ГИА и ЕГЭ.

Валентность и химический анализ

Валентность – способность атомов химических элементов вступать в химические соединения с атомами других элементов. Другими словами, это способность атома образовывать определенное число химических связей с другими атомами.

С латыни слово «валентность» переводится как «сила, способность». Очень верное название, правда?

Понятие «валентность» - одно из основных в химии. Было введено еще до того, как ученым стало известно строение атома (в далеком 1853 году). Поэтому по мере изучения строения атома пережило некоторые изменения.

Так, с точки зрения электронной теории валентность напрямую связана с числом внешних электронов атома элемента. Это значит, что под «валентностью» подразумевают число электронных пар, которыми атом связан с другими атомами.

Зная это, ученые смогли описать природу химической связи. Она заключается в том, что пара атомов вещества делит между собой пару валентных электронов.

Вы спросите, как же химики 19 века смогли описать валентность еще тогда, когда считали, что мельче атома частиц не бывает? Нельзя сказать, что это было так уж просто – они опирались на химический анализ.

Путем химического анализа ученые прошлого определяли состав химического соединения: сколько атомов различных элементов содержится в молекуле рассматриваемого вещества. Для этого нужно было определить, какова точная масса каждого элемента в образце чистого (без примесей) вещества.

Правда, метод этот не без изъянов. Потому что определить подобным образом валентность элемента можно только в его простом соединении со всегда одновалентным водородом (гидрид) или всегда двухвалентным кислородом (оксид). К примеру, валентность азота в NH 3 – III, поскольку один атом водорода связан с тремя атомами азота. А валентность углерода в метане (СН 4), по тому же принципу, – IV.

Этот метод для определения валентности годится только для простых веществ. А вот в кислотах таким образом мы можем только определить валентность соединений вроде кислотных остатков, но не всех элементов (кроме известной нам валентности водорода) по отдельности.

Как вы уже обратили внимание, обозначается валентность римскими цифрами.

Валентность и кислоты

Поскольку валентность водорода остается неизменной и хорошо вам известна, вы легко сможете определить и валентность кислотного остатка. Так, к примеру, в H 2 SO 3 валентность SO 3 – I, в HСlO 3 валентность СlO 3 – I.

Аналогчиным образом, если известна валентность кислотного остатка, несложно записать правильную формулу кислоты: NO 2 (I) – HNO 2 , S 4 O 6 (II) – H 2 S 4 O 6 .

Валентность и формулы

Понятие валентности имеет смысл только для веществ молекулярной природы и не слишком подходит для описания химических связей в соединениях кластерной, ионной, кристаллической природы и т.п.

Индексы в молекулярных формулах веществ отражают количество атомов элементов, которые входят в их состав. Правильно расставить индексы помогает знание валентности элементов. Таким же образом, глядя на молекулярную формулу и индексы, вы можете назвать валентности входящих в состав элементов.

Вы выполняете такие задания на уроках химии в школе. Например, имея химическую формулу вещества, в котором известна валентность одного из элементов, можно легко определить валентность другого элемента.

Для этого нужно только запомнить, что в веществе молекулярной природы число валентностей обоих элементов равны. Поэтому используйте наименьшее общее кратное (соответсвует числу свободных валентностей, необходимых для соединения), чтобы определить неизвестную вам валентность элемента.

Чтобы было понятно, возьмем формулу оксида железа Fe 2 O 3 . Здесь в образовании химической связи участвуют два атома железа с валентностью III и 3 атома кислорода с валентностью II. Наименьшим общим кратным для них является 6.

  • Пример: у вас есть формулы Mn 2 O 7 . Вам известна валентность кислорода, легко вычислить, что наименьше общее кратное – 14, откуда валентность Mn – VII.

Аналогичным образом можно поступить и наоборот: записать правильную химическую формулу вещества, зная валентности входящих в него элементов.

  • Пример: чтобы правильно записать формулу оксида фосфора, учтем валентность кислорода (II) и фосфора (V). Значит, наименьшее общее кратное для Р и О – 10. Следовательно, формула имеет следующий вид: Р 2 О 5 .

Хорошо зная свойства элементов, которые они проявляют в различных соединениях, можно определить их валентность даже по внешнему виду таких соединений.

Например: оксиды меди имеют красную (Cu 2 O) и черную (CuО) окраску. Гидроксиды меди окрашены в желтый (CuОН) и синий (Cu(ОН) 2) цвета.

А чтобы ковалентные связи в веществах стали для вас более наглядными и понятными, напишите их структурные формулы. Черточки между элементами изображают возникающие между их атомами связи (валентности):

Характеристики валентности

Сегодня определение валентности элементов базируется на знаниях о строении внешних электронных оболочек их атомов.

Валентность может быть:

  • постоянной (металлы главных подгрупп);
  • переменной (неметаллы и металлы побочных групп):
    • высшая валентность;
    • низшая валентность.

Постоянной в различных химических соединениях остается:

  • валентность водорода, натрия, калия, фтора (I);
  • валентность кислорода, магния, кальция, цинка (II);
  • валентность алюминия (III).

А вот валентность железа и меди, брома и хлора, а также многих других элементов изменяется, когда они образуют различные химические соедения.

Валентность и электронная теория

В рамках электронной теории валентность атома определеяется на основании числа непарных электронов, которые участвуют в образовании электронных пар с электронами других атомов.

В образовании химических связей участвуют только электроны, находящиеся на внешней оболочке атома. Поэтому максимальная валентность химического элемента – это число электронов во внешней электронной оболочке его атома.

Понятие валентности тесно связано с Периодическим законом, открытым Д. И. Менделеевым. Если вы внимательно посмотрите на таблицу Менделеева, легко сможете заметить: положение элемента в перодической системе и его валентность неравзрывно связаны. Высшая валентность элементов, которые относятся к одной и тоже группе, соответсвует порядковому номеру группы в периодичнеской системе.

Низшую валентность вы узнаете, когда от числа групп в таблице Менделеева (их восемь) отнимете номер группы элемента, который вас интересует.

Например, валентность многих металлов совпадает с номерами групп в таблице периодических элементов, к которым они относятся.

Таблица валентности химических элементов

Порядковый номер

хим. элемента (атомный номер)

Наименование

Химический символ

Валентность

1 Водород / Hydrogen

Гелий / Helium

Литий / Lithium

Бериллий / Beryllium

Углерод / Carbon

Азот / Nitrogen

Кислород / Oxygen

Фтор / Fluorine

Неон / Neon

Натрий / Sodium

Магний / Magnesium

Алюминий / Aluminum

Кремний / Silicon

Фосфор / Phosphorus

Сера / Sulfur

Хлор / Chlorine

Аргон / Argon

Калий / Potassium

Кальций / Calcium

Скандий / Scandium

Титан / Titanium

Ванадий / Vanadium

Хром / Chromium

Марганец / Manganese

Железо / Iron

Кобальт / Cobalt

Никель / Nickel

Медь / Copper

Цинк / Zinc

Галлий / Gallium

Германий /Germanium

Мышьяк / Arsenic

Селен / Selenium

Бром / Bromine

Криптон / Krypton

Рубидий / Rubidium

Стронций / Strontium

Иттрий / Yttrium

Цирконий / Zirconium

Ниобий / Niobium

Молибден / Molybdenum

Технеций / Technetium

Рутений / Ruthenium

Родий / Rhodium

Палладий / Palladium

Серебро / Silver

Кадмий / Cadmium

Индий / Indium

Олово / Tin

Сурьма / Antimony

Теллур / Tellurium

Иод / Iodine

Ксенон / Xenon

Цезий / Cesium

Барий / Barium

Лантан / Lanthanum

Церий / Cerium

Празеодим / Praseodymium

Неодим / Neodymium

Прометий / Promethium

Самарий / Samarium

Европий / Europium

Гадолиний / Gadolinium

Тербий / Terbium

Диспрозий / Dysprosium

Гольмий / Holmium

Эрбий / Erbium

Тулий / Thulium

Иттербий / Ytterbium

Лютеций / Lutetium

Гафний / Hafnium

Тантал / Tantalum

Вольфрам / Tungsten

Рений / Rhenium

Осмий / Osmium

Иридий / Iridium

Платина / Platinum

Золото / Gold

Ртуть / Mercury

Талий / Thallium

Свинец / Lead

Висмут / Bismuth

Полоний / Polonium

Астат / Astatine

Радон / Radon

Франций / Francium

Радий / Radium

Актиний / Actinium

Торий / Thorium

Проактиний / Protactinium

Уран / Uranium

H I

(I), II, III, IV, V

I, (II), III, (IV), V, VII

II, (III), IV, VI, VII

II, III, (IV), VI

(I), II, (III), (IV)

I, (III), (IV), V

(II), (III), IV

(II), III, (IV), V

(II), III, (IV), (V), VI

(II), III, IV, (VI), (VII), VIII

(II), (III), IV, (VI)

I, (III), (IV), V, VII

(II), (III), (IV), (V), VI

(I), II, (III), IV, (V), VI, VII

(II), III, IV, VI, VIII

(I), (II), III, IV, VI

(I), II, (III), IV, VI

(II), III, (IV), (V)

Нет данных

Нет данных

(II), III, IV, (V), VI

В скобках даны те валентности, которые обладающие ими элементы проявляют редко.

Валентность и степень окисления

Так, говоря о степени окисления, подразумевают, что атом в веществе ионной (что важно) природы имеет некий условный заряд. И если валентность – это нейтральная характеристика, то степень окисления может быть отрицательной, положительной или равной нулю.

Интересно, что для атома одного и того же элемента, в зависимости от элементов, с которыми он образует химическое соединение, валентность и степень окисления могут совпадать (Н 2 О, СН 4 и др.) и различаться (Н 2 О 2 , HNO 3).

Заключение

Углубляя свои знания о строении атомов, вы глубже и подробнее узнаете и валентность. Эта характеристика химических элементов не является исчерпывающей. Но у нее большое прикладное значение. В чем вы сами не раз убедились, решая задачи и проводя химические опыты на уроках.

Эта статья создана, чтобы помочь вам систематизировать свои знания о валентности. А также напомнить, как можно ее определить и где валентность находит применение.

Надеемся, этот материал окажется для вас полезным при подготовке домашних заданий и самоподготовке к контрольным и экзаменам.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Значения валентности по водороду и кислороду различаются. Например, сера в соединении H2S двухвалентна, а в формуле SO3 - шестивалентна. Углерод образует с кислородом монооксид CO и диоксид CO2. В первом соединении валентность C равна II, а во втором - IV. Такое же значение в метане CH4.- Читайте подробнее на FB.ru:

Большинство элементов проявляет не постоянную, а переменную валентность , например, фосфор, азот, сера. Поиски основных причин этого явления привели к возникновению теорий химическй связи, представлений о валентной оболочке электронов, молекулярных орбиталях. Существование разных значений одного и того же свойства получило объяснение с позиций строения атомов и молекул.

Постоянная валентность. Эволюция понятия "валентность". Последовательность действий при определении валентности атомов элементов в соединениях, составление формулы. Из этих сведений вытекает важное правило: максимальное значение валентности элемента совпадает с номером группы, в которой он находится1. Поскольку в периодической системе восемь групп, то значения валентности элементов могут быть от I до 8.

Согласно той теории валентности, которую выдвигал Кекуле, для углерода принималась одна постоянная валентность , тогда как поведение многих других элементов, как, впрочем, и самого углерода, очевидным образом противоречило понятию о постоянной валентности. Например, электроотрицательные элементы, такие, как хлор и сера, соединяются с кислородом в различных пропорциях элементы электроположительные, такие, как железо, дают несколько окислов. Логика требовали принять, что один и тот же элемент, смотря по обстоятельствам, может проявлять различные степени валентности. Как следствие из наблюдавшихся фактов и еще более из закона кратных отношений возникает понятие о многовалентности или переменной валентности. Все н<е, как заметил Эрлен-мейер следует полагать, что каждый элемент обладает максимальной валентностью , ему свойственной и. для него характерной, но которую он не всегда может проявить. Хотя на первый взгляд это предположение вполне приемлемо, не обошлось без серьезных возражений в самом деле, поскольку максимальная валентность есть характеристическое свойство атома, то соединения, в которых реализуется этот максимум, должны бы быть более устойчивыми. Максимальная валентность химического элемента – это число электронов во внешней электронной оболочке его атома. Понятие валентности тесно связано с Периодическим законом Менделеева. Если внимательно посмотреть на таблицу Менделеева, можно заметить: положение элемента в периодической системе и его валентность нерарывно связаны.


Валентность - II (минимальная ) Валентность – IV (высшая) Высшая (максимальная ) валентность в большинстве своем совпадает с номером группы химического элемента.

Схема образования химической связи: перекрывание внешних атомных орбиталей взаимодействующих атомов. Порядок связи. Простые и кратные связи. Би и пи- связи – разновидности неполярных и полярных химических связей.

Основные положения метода валентных связей. 1.Ковалентную химическую связь образуют два электрона с противоположными спинами, принадлежащие двум атомам. Например, при сближении двух атомов водорода происходит частичное перекрывание их электронных орбиталей и образуется общая пара электронов H× + × H = H: H

Ковалентная связь может быть образована и по донорно-акцепторному механизму. Механизм образования ковалентной связи за счёт электронной пары одного атома (донора) и другого атома (акцептора), предоставляющего для этой пары свободную орбиталь, называется донорно-акцепторным.

В качестве примера возьмём механизм образования иона аммония NH4+. В молекуле NH3 три поделённые электронные пары образуют три связи N- H, четвёртая пара внешних электронов является не поделённой, она может дать связь с ионом водорода, в результате получается ион аммония NH4+ . Ион NH4+ имеет четыре ковалентных связи, причем все четыре связи N-H равноценны, то есть электронная плотность равномерно распределена между ними.

2. При образовании ковалентной химической связи происходит перекрывание волновых функций электронов (электронных орбиталей), при этом связь будет тем прочнее, чем больше это перекрывание.

3. Ковалентная химическая связь располагается в том направлении, в котором возможность перекрывания волновых функций электронов, образующих связь будет наибольшей.

4. Валентность атома в нормальном (невозбужденном) состоянии определяется:

Числом неспаренных электронов, участвующих в образовании общих электронных пар с электронами других атомов;

Наличием донорной способности (за счёт одной неподелённой электронной пары).

В возбужденном состоянии валентность атома определяется:

Числом неспаренных электронов;

Числом вакантных орбиталей, способных акцептировать электронные пары доноров.

Таким образом, валентность выражается небольшими целыми числами и не имеет знака. Мерой валентности является число химических связей, которыми данный атом соединён с другими.

К валентным относятся прежде всего электроны внешних уровней, но для элементов побочных подгрупп к ним относятся и электроны предпоследних (предвнешних) уровней.

Химическая формула отражает состав (структуру) химического соединения или простого вещества. Например, Н 2 О - два атома водорода соединены с атомом кислорода. Химические формулы содержат также некоторые сведения о структуре вещества: например, Fe(OH) 3 , Al 2 (SO 4) 3 - в этих формулах указаны некоторые устойчивые группировки (ОН, SO 4), которые входят в состав вещества - его молекулы, формульной или структурной единицы (ФЕ или СЕ).

Молекулярная формула указывает число атомов каждого элемента в молекуле. Молекулярная формула описывает только вещества с молекулярным строением (газы, жидкости и некоторые твердые вещества). Состав вещества с атомной или ионной структурой можно описать только символами формульных единиц.

Формульные единицы указывают простейшее соотношение между числом атомов разных элементов в веществе. Например, формульная единица бензола  СН, молекулярная формула  С 6 Н 6 .

Структурная (графическая) формула указывает порядок соединения атомов в молекуле (а также в ФЕ и СЕ) и число связей между атомами.

Рассмотрение таких формул привело к представлению о валентности (valentia - сила) - как о способности атома данного элемента присоединять к себе определенное число других атомов. Можно выделить три вида валентности: стехиометрическую (включая степень окисления), структурную и электронную.

Стехиометрическая валентность. Количественный подход к определению валентности оказался возможным после установления понятия «эквивалент» и его определения по закону эквивалентов. Основываясь на этих понятиях можно ввести представление о стехиометрической валентности - это число эквивалентов, которое может к себе присоединить данный атом, или - число эквивалентов в атоме. Эквиваленты определяются по количеству атомов водорода, то и V стх фактически означает число атомов водорода (или эквивалентных ему частиц), с которыми взаимодействует данный атом.

V стх = Z B или V стх = . (1.1)

Например, в SO 3 ( S= +6), Z B (S) равен 6 V стх (S) = 6.

Эквивалент водорода равен 1, поэтому для элементов в приведенных ниже соединениях Z B (Cl) = 1, Z B (О) =2, Z B (N) = 3, а Z B (C) = 4. Численное значение стехиометрической валентности принято обозначать римскими цифрами:

I I I II III I IV I

HCl, H 2 O, NН 3 , CH 4 .

В тех случаях, когда элемент не соединяется с водородом, валентность искомого элемента определяется по элементу, валентность которого известна. Чаще всего ее находят по кислороду, поскольку валентность его в соединениях обычно равна двум. Например, в соединениях:

II II III II IV II

CaO Al 2 O 3 CО 2 .

При определении стехиометрической валентности элемента по формуле бинарного соединения следует помнить, что суммарная валентность всех атомов одного элемента должна быть равна суммарной валентности всех атомов другого элемента.

Зная валентность элементов, можно составить химическую формулу вещества. При составлении химических формул можно соблюдать следующий порядок действий:

1. Пишут рядом химические символы элементов, которые входят в состав соединения: KO AlCl AlO ;

2. Над символами химических элементов проставляют их валентность:

I II III I III II

3. Используя выше сформулированное правило, определяют наименьшее общее кратное чисел, выражающих стехиометрическую валентность обоих элементов (2, 3 и 6, соответственно).

    Делением наименьшего общего кратного на валентность соответствующего элемента находят индексы:

I II III I III II

K 2 O AlCl 3 Al 2 O 3 .

Пример 1. Составить формулу оксида хлора, зная, что хлор в нем семивалентен, а кислород - двухвалентен.

Решение. Находим наименьшее кратное чисел 2 и 7 - оно равно 14. Разделив наименьшее общее кратное на стехиометрическую валентность соответствующего элемента, находим индексы: для атомов хлора 14/7 = 2, для атомов кислорода 14/2 = 7.

Формула оксида -Cl 2 O 7 .

Степень окисления также характеризует состав вещества и равна стехиометрической валентности со знаком "плюс" (для металла или более электроположительного элемента в молекуле) или “минус”.

 = ±V стх. (1.2)

w определяется через V стх, следовательно через эквивалент, и это означает, что w(Н) = ±1; далее опытным путем могут быть найдены w всех других элементов в различных соединениях. В частности, важно, что ряд элементов имеют всегда или почти всегда постоянные степени окисления.

Полезно помнить следующие правила определения степеней окисления.

1. w(Н) = ±1 (. w = +1 в Н 2 О, НCl; . w = –1 в NaH, CaH 2);

2. F (фтор) во всех соединениях имеет w = –1, остальные галогены с металлами, водородом и другими более электроположительными элементами тоже имеют w = –1.

3. Кислород в обычных соединения имеет. w = –2 (исключения – пероксид водорода и его производные – Н 2 О 2 или BaO 2 , в которых кислород имеет степень окисления –1, а также фторид кислорода OF 2 , степень окисления кислорода в котором равна +2).

4. Щелочные (Li – Fr) и щелочно-земельные (Ca - Ra) металлы всегда имеют степень окисления, равную номеру группы, то есть +1 и +2, соответственно;

5. Al, Ga, In, Sc, Y, La и лантаноиды (кроме Се) – w = +3.

6. Высшая степень окисления элемента равна номеру группы периодической системы, а низшая = (№ группы - 8). Например, высшая w (S) = +6 в SO 3 , низшая w = -2 в Н 2 S.

7. Степени окисления простых веществ приняты равными нулю.

8. Степени окисления ионов равны их зарядам.

9. Степени окисления элементов в соединении компенсируют друг друга так, что их сумма для всех атомов в молекуле или нейтральной формульной единице равна нулю, а для иона - его заряду. Это можно использовать для определения неизвестной степени окисления по известным и составления формулы многоэлементных соединений.

Пример 2. Определить степень окисления хрома в солиK 2 CrO 4 и в ионеCr 2 O 7 2 - .

Решение. Принимаемw(К) = +1;w(О) =-2. Для структурной единицыK 2 CrO 4 имеем:

2 . (+1) + Х + 4 . (-2) = 0, отсюда Х =w(Сr) = +6.

Для иона Cr 2 O 7 2 - имеем: 2 . Х + 7 . (-2) =-2, Х =w(Cr) = +6.

То есть степень окисления хрома в обоих случаях одинакова.

Пример 3. Определить степень окисления фосфора в соединенияхP 2 O 3 иPH 3 .

Решение. В соединенииP 2 O 3 w(О) =-2. Исходя из того, что алгебраическая сумма степеней окисления молекулы должна быть равной нулю, находим степень окисления фосфора: 2 . Х + 3 . (-2) = 0, отсюда Х =w(Р) = +3.

В соединении PH 3 w(Н) = +1, отсюда Х + 3.(+1) = 0. Х =w(Р) =-3.

Пример 4. Напишите формулы оксидов, которые можно получить при термическом разложении перечисленных ниже гидроксидов:

H 2 SiO 3 ; Fe(OH) 3 ; H 3 AsO 4 ; H 2 WO 4 ; Cu(OH) 2 .

Решение. H 2 SiO 3 -определим степень окисления кремния:w(Н) = +1,w(О) =-2, отсюда: 2 . (+1) + Х + 3 . (-2) = 0.w(Si) = Х = +4. Составляем формулу оксида-SiO 2 .

Fe(OH) 3 -заряд гидроксогруппы равен-1, следовательноw(Fe) = +3 и формула соответствующего оксидаFe 2 O 3 .

H 3 AsO 4 -степень окисления мышьяка в кислоте: 3 . (+1) +X+ 4 . (-2) = 0.X=w(As) = +5. Таким образом, формула оксида-As 2 O 5 .

H 2 WO 4 -w(W) в кислоте равна +6, таким образом формула соответствующего оксида-WO 3 .

Cu(OH) 2 -так как имеется две гидроксогруппы, заряд которой равен-1, следовательноw(Cu) = +2 и формула оксида -CuO.

Большинство элементов имеют по несколько степеней окисления.

Рассмотрим, как с помощью таблицы Д.И. Менделеева можно определить основные степени окисления элементов.

Устойчивые степени окисления элементов главных подгрупп можно определять по следующим правилам:

1. У элементов I-III групп существуют единственные степени окисления - положительные и равные по величине номерам групп (кроме таллия, имеющего w = +1 и +3).

У элементов IV-VI групп, кроме положительной степени окисления, соответствующей номеру группы, и отрицательной, равной разности между числом 8 и номером группы, существуют еще промежуточные степени окисления, обычно отличающиеся между собой на 2 единицы. Для IV группы степени окисления, соответственно, равны +4, +2, -2, -4; для элементов V группы соответственно -3, -1 +3 +5; и для VI группы - +6, +4, -2.

3. У элементов VII группы существуют все степени окисления от +7 до -1, различающиеся на две единицы, т.е. +7,+5, +3, +1 и -1. В группе галогенов выделяется фтор, который не имеет положительных степеней окисления и в соединениях с другими элементами существует только в одной степени окисления -1. (Имеется несколько соединений галогенов с четными степенями окисления: ClO, ClO 2 и др.)

У элементов побочных подгрупп нет простой связи между устойчивыми степенями окисления и номером группы. У некоторых элементов побочных подгрупп устойчивые степени окисления следует просто запомнить. К таким элементам относятся:

Cr (+3 и +6), Mn (+7, +6, +4 и +2), Fe, Co и Ni (+3 и +2), Cu (+2 и +1), Ag (+1), Au (+3 и +1), Zn и Cd (+2), Hg (+2 и +1).

Для составления формул трех- и многоэлементных соединений по степеням окисления необходимо знать степени окисления всех элементов. При этом количество атомов элементов в формуле определяется из условия равенства суммы степеней окисления всех атомов заряду формульной единицы (молекулы, иона). Например, если известно, что в незаряженной формульной единице имеются атомы K, Cr и О со степенями окисления равными +1, +6 и -2 соответственно, то этому условию будут удовлетворять формулы K 2 CrO 4 , K 2 Cr 2 O 7 , K 2 Cr 3 O 10 и многие другие; аналогично этому иону с зарядом -2, содержащему Cr +6 и O - 2 будут соответствовать формулы CrO 4 2 - , Cr 2 O 7 2 - , Cr 3 O 10 2 - , Cr 4 O 13 2 - и т.д.

3. Электронная валентность V ‑ число химических связей, образуемых данным атомом.

Например, в молекуле H 2 O 2 Н ¾ О

V стх (O) = 1, V к. ч.(O) = 2, V .(O) = 2

То есть, имеются химические соединения, в которых стехиометрическая и электронная валентности не совпадают; к ним, например, относятся и комплексные соединения.

Координационная и электронная валентности более подробно рассматриваются в темах “Химическая связь” и “Комплексные соединения”.

Понятие «валентность» формировалось в химии с начала XIX века. Английский ученый Э. Франкленд обратил внимание, что все элементы могут образовывать с атомами других элементов только определенное количество связей. Он назвал это «соединительной силой». Позже немецкий ученый Ф. А. Кекуле изучал метан и пришел к выводу, что один атом углерода может присоединить в нормальных условиях только четыре атома водорода.

Он назвал это основностью. Основность углерода равна четырем. То есть углерод может образовать четыре связи с другими элементами.

Вконтакте


Дальнейшее развитие понятие получило в работах Д. И. Менделеева. Дмитрий Иванович развивал учение о периодическом изменении свойств простых веществ. Соединительную силу он определял как способность элемента присоединять определенное количество атомов другого элемента.

Определение по таблице Менделеева

Таблица Менделеева позволяет с легкостью определять основность элементов. Для этого нужно уметь читать периодическую таблицу . Таблица по вертикали имеет восемь групп, а по горизонтали располагаются периоды. Если период состоит из двух рядов, то его называют большим, а если из одной - малым. Элементы по вертикали в столбцах, в группах распределены неравномерно. Валентность всегда обозначается римскими цифрами.

Чтобы определить валентность, нужно знать, какая она бывает. У металлов главных подгрупп она всегда постоянная, а у неметаллов и металлов побочных подгрупп может быть переменной.

Постоянная равна номеру группы. Переменная может быть высшей и низшей. Высшая переменная равна номеру группы, а низкая высчитывается по формуле: восемь минус номер группы. При определении нужно помнить:

  • у водорода она равна I;
  • у кислорода - II.

Если соединение имеет атом водорода или кислорода, то определить его валентность не составляет труда, особенно если перед нами гидрид или оксид.

Формула и алгоритм

Самая меньшая валентность у тех элементов, которые расположены правее и выше в таблице. И, наоборот, если элемент ниже и левее, то она будет выше. Чтобы определить ее, необходимо следовать универсальному алгоритму:

Пример: возьмем соединение аммиака - NH3. Нам известно, что у атома водорода валентность постоянная и равна I. Умножаем I на 3 (количество атомов) - наименьшее кратное - 3. У азота в этой формуле индекс равен единице. Отсюда вывод: 3 делим на 1 и получаем, что у азота она равна IIII.

Величину по водороду и кислороду всегда определять легко. Сложнее, когда ее необходимо определять без них. Например, соединение SiCl4 . Как определить валентность элементов в этом случае? Хлор находится в 7 группе. Значит, его валентность либо 7, либо 1 (восемь минус номер группы). Кремний находится в четвертой группе, значит, его потенциал для образования связей равен четырем. Становится логично, что хлор проявляет в этой ситуации наименьшую валентность и она равна I.

В современных учебниках химии всегда есть таблица валентности химических элементов. Это существенно облегчает задачу учащимся. Тему изучают в восьмом классе - в курсе неорганической химии.

Современные представления

Современные представления о валентности базируются на строении атомов. Атом состоит из ядра и вращающихся на орбиталях электронах.

Само ядро состоит из протонов и нейтронов, которые определяют атомный вес. Для того чтобы вещество было стабильным, его энергетические уровни должны быть заполнены и иметь восемь электронов.

При взаимодействии элементы стремятся к стабильности и либо отдают свои неспаренные электроны, либо принимают их. Взаимодействие происходит по принципу «что легче» - отдать или принять электроны. От этого также зависит то, как изменяется валентность в таблице Менделеева. Количество неспаренных электронов на внешней энергетической орбитали равно номеру группы.

В качестве примера

Щелочной металл натрий находится в первой группе периодической системы Менделеева. Это значит, что у него один неспаренный электрон на внешнем энергетическом уровне. Хлор находится в седьмой группе. Это значит, что у хлора есть семь неспаренных электронов. Для завершения энергетического уровня хлору не хватает ровно одного электрона. Натрий отдает ему свой электрон и становится стабильным в соединении. Хлор же получает дополнительный электрон и тоже становится стабильным. В итоге появляется связь и прочное соединение - NaCl - знаменитая поваренная соль. Валентность хлора и натрия в этом случае будет равна 1.

Существует несколько определений понятия «валентность». Чаще всего этим термином называют способность атомов одного элемента присоединять определённое число атомов других элементов. Часто у тех, кто только начинает изучать химию, возникает вопрос: Как определить валентность элемента?. Сделать это несложно, зная несколько правил.

Валентности постоянные и переменные

Рассмотрим соединения HF, H2S и CaH2. В каждом из этих примеров один атом водорода присоединяет к себе только один атом другого химического элемента, значит его валентность равна одному. Значение валентности записывают над символом химического элемента римскими цифрами.

В приведённом примере атом фтора связан только с одним одновалентным атомом H, значит валентность его тоже равна 1. Атом серы в H2S присоединяет к себе уже два атома H, поэтому она в данном соединении двухвалентна. С двумя водородными атомами связан и кальций в его гидриде CaH2, а значит, и его валентность равна двум.

Кислород в подавляющем большинстве своих соединений двухвалентен, то есть образует две химические связи с другими атомами.

Атом серы в первом случае присоединяет к себе два кислородных атома, то есть всего образует 4 химические связи (один кислород образует две связи, значит сера — два раза по 2), то есть валентность ее равна 4.

В соединении SO3 сера присоединяет уже три атома O, поэтому и валентность ее равна 6 (три раза образует по две связи с каждым атомом кислорода). Атом кальция же присоединяет только один атом кислорода, образуя с ним две связи, значит, его валентность такая же, как и у O, то есть равна 2.

Обратите внимание на то, что атом H одновалентен в любом соединении. Всегда (кроме иона гидроксония H3O(+)) равна 2 валентность кислорода. По две химические связи как с водородом, так и с кислородом образует кальций. Это элементы с постоянной валентностью. Кроме уже указанных, постоянную валентность имеют:

  • Li, Na, K, F — одновалентны;
  • Be, Mg, Ca, Zn, Cd — обладают валентностью, равной II;
  • B, Al и Ga — трехвалентны.

Атом серы, в отличие от рассмотренных случаев, в соединении с водородом имеет валентность, равную II, а с кислородом может быть и четырех- и шестивалентна. Про атомы таких элементов говорят, что они имеют переменную валентность. При этом максимальное ее значение в большинстве случаев совпадает с номером группы, в которой находится элемент в Периодической системе (правило 1).

Из этого правила есть много исключений. Так, элемент 1 группы медь, проявляет валентности и I, и II. Железо, кобальт, никель, азот, фтор, напротив, имеют максимальную валентность, меньшую, чем номер группы. Так, для Fe, Co, Ni это II и III, для N — IV, а для фтора — I.

Минимальное значение валентности всегда соответствует разнице между числом 8 и номером группы (правило 2).

Однозначно определить, какова же валентность элементов, у которых она переменная, можно только по формуле определенного вещества.

Определение валентности в бинарном соединении

Рассмотрим, как определить валентность элемента в бинарном (из двух элементов) соединении. Здесь возможны два варианта: в соединении валентность атомов одного элемента известна точно или же обе частицы с переменной валентностью.

Случай первый:

Случай второй:

Определение валентности по формуле трехэлементной частицы.

Далеко не все химические вещества состоят из двухатомных молекул. Как определить валентность элемента в трёхэлементной частице? Рассмотрим этот вопрос на примере формул двух соединения K2Cr2O7.

Если же вместо калия в формуле будет присутствовать железо, или другой элемент с переменной валентностью, нам потребуется знать, какова же валентность кислотного остатка. Например, нужно вычислить валентности атомов всех элементов в соединении с формулой FeSO4.

Следует отметить, что термин «валентность» чаще использую в органической химии. При составлении формул неорганических соединений чаще используют понятие «степень окисления».