Формы орбиталей атомов. Атомные орбитали. Каждый предпочитает свои орбитали

m квантовыми числами.

Волновая функция рассчитывается по волновому уравнению Шрёдингера в рамках одноэлектронного приближения (метод Хартри - Фока) как волновая функция электрона, находящегося в самосогласованном поле, создаваемым ядром атома со всеми остальными электронами атома.

Сам Э.Шрёдингер рассматривал электрон в атоме как отрицательно заряженное облако, плотность которого пропорциональна квадрату значения волновой функции в соответствующей точке атома. В таком виде понятие электронного облака было воспринято и в теоретической химии.

Однако большинство физиков не разделяли убеждений Э.Шрёдингера - доказательства существования электрона как «отрицательно заряженного облака» не было. Макс Борн обосновал вероятностную трактовку квадрата волновой функции. В 1950 г. Э.Шрёдингер в статье «Что такое элементарная частица?» вынужден согласиться с доводами М.Борна, которому в 1954 году присуждена Нобелевская премия по физике с формулировкой «За фундаментальное исследование в области квантовой механики, особенно за статистическую интерпретацию волновой функции ».

Квантовые числа и номенклатура орбиталей

Радиальное распределение плотности вероятности для атомных орбиталей при различных n и l .

  • Главное квантовое число n может принимать любые целые положительные значения, начиная с единицы (n = 1,2,3, … ∞) и определяет общую энергию электрона на данной орбитали (энергетический уровень) :
Энергия для n = ∞ соответствует энергии одноэлектронной ионизации для данного энергетического уровня.
  • Орбитальное квантовое число (называемое также азимутальным или дополнительным квантовым числом) определяет момент импульса электрона и может принимать целые значения от 0 до n - 1 (l = 0,1, …, n - 1). Момент импульса при этом задаётся соотношением
Атомные орбитали принято называть по буквенному обозначению их орбитального числа:

Буквенные обозначения атомных орбиталей произошли от описания спектральных линий в атомных спектрах: s (sharp ) - резкая серия в атомных спектрах, p (principal )- главная, d (diffuse ) - диффузная, f (fundamental ) - фундаментальная.

  • Магнитное квантовое число m l определяет проекцию орбитального момента импульса на направление магнитного поля и может принимать целые значения в диапазоне от -l до l , включая 0 (m l = -l … 0 … l ):

В литературе орбитали обозначают комбинацией квантовых чисел, при этом главное квантовое число обозначают цифрой, орбитальное квантовое число - соответствующей буквой (см. таблицу ниже) и магнитное квантовое число - выражением в нижнем индексе, показывающем проекцию орбитали на декартовы оси x, y, z, например 2p x , 3d xy , 4f z(x²-y²) . Для орбиталей внешней электронной оболочки, то есть в случае описания валентных электронов, главное квантовое число в записи орбитали, как правило, опускают.

Геометрическое представление

Геометрическое представление атомной орбитали - область пространства, ограниченная поверхностью равной плотности (эквиденситной поверхностью) вероятности или заряда . Плотность вероятности на граничной поверхности выбирают исходя из решаемой задачи, но, обычно, таким образом, чтобы вероятность нахождения электрона в ограниченной области лежала в диапазоне значений 0,9-0,99.

Поскольку энергия электрона определяется кулоновским взаимодействием и, следовательно, расстоянием от ядра, то главное квантовое число n задаёт размер орбитали.

Форма и симметрия орбитали задаются орбитальными квантовыми числами l и m : s -орбитали являются сферически симметричными, p , d и f -орбитали имеют более сложную форму, определяемую угловыми частями волновой функции - угловыми функциями. Угловые функции Y lm (φ , θ) - собственные функции оператора квадрата углового момента L², зависящие от квантовых чисел l и m (см. Сферические функции), являются комплексными и описывают в сферических координатах (φ , θ) угловую зависимость вероятности нахождения электрона в центральном поле атома. Линейная комбинация этих функций определяет положение орбиталей относительно декартовых осей координат.

Для линейных комбинаций Y lm приняты следующие обозначения:

Значение орбитального квантового числа 0 1 1 1 2 2 2 2 2
Значение магнитного квантового числа 0 0 0
Линейная комбинация
Обозначение

Дополнительным фактором, иногда учитываемым в геометрическом представлении, является знак волновой функции (фаза). Этот фактор существеннен для орбиталей с орбитальным квантовым числом l , отличным от нуля, то есть не обладающих сферической симметрией: знак волновой функции их «лепестков», лежащих по разные стороны узловой плоскости, противоположен. Знак волновой функции учитывается в методе молекулярных орбиталей МО ЛКАО (молекулярные орбитали как линейная комбинация атомных орбиталей). Сегодня науке известны математические уравнения, описывающие геометрические фигуры, представляющие орбитали (зависимотси координаты электрона от времени). Это уравнения гармонических колебаний отражающие вращение частиц по всем доступным степеням свободы - орбитальное вращение, спин,... Гибридизация орбиталей представляется как интерференция колебаний.

Заполнение орбиталей электронами и электронная конфигурация атома

На каждой орбитали может быть не более двух электронов, отличающихся значением спинового квантового числа s (спина). Этот запрет определён принципом Паули . Порядок заполнения электронами орбиталей одного уровня (орбиталей с одинаковым значением главного квантового числа n ) определяется правилом Клечковского , порядок заполнения электронами орбиталей в пределах одного подуровня (орбиталей с одинаковыми значениями главного квантового числа n и орбитального квантового числа l ) определяется Правилом Хунда .

Краткую запись распределения электронов в атоме по различным электронным оболочкам атома с учётом их главного и орбитального квантовых чисел n и l называют

Физические и химические свойства атомов, а следовательно, и вещества в целом во многом определяются особенностями электронного облака вокруг атомного ядра. Положительно заряженное ядро притягивает отрицательно заряженные электроны. Электроны вращаются вокруг ядра так быстро, что точно определить их местонахождение не представляется возможным. Движущиеся вокруг ядра электроны можно сравнить с облаком или туманом, в одних местах более или менее плотным, в других – совсем разреженным. Форму электронного облака, а также вероятность нахождения электрона в любой его точке можно определить, решив соответствующие уравнения квантовой механики . Области наиболее вероятного нахождения электронов называют орбиталями. Каждая орбиталь характеризуется определенной энергией, и на ней может находиться не более двух электронов. Обычно вначале заполняются ближайшие к ядру самые низкоэнергетические орбитали, затем орбитали с более высокой энергией и т.д.

Совокупность электронных орбиталей с близкой энергией образует слой (т.е. оболочку, или энергетический уровень). Энергетические уровни нумеруют, начиная от ядра атома: 1, 2, 3, ... . Чем дальше от ядра, тем просторнее слои и тем больше орбиталей и электронов они могут вместить. Так, на n -м уровне n 2 орбиталей, и на них могут располагаться до 2 n 2 электронов. У известных элементов электроны находятся только на первых семи уровнях, и лишь первые четыре из них бывают заполненными.

Существует четыре типа орбиталей, их обозначают s , p , d и f . На каждом уровне (слое) имеется одна s -орбиталь, которая содержит наиболее прочно связанные с ядром электроны. За ней следуют три p -орбитали, пять d -орбиталей и, наконец, семь f -орбиталей.

Оболочка n

Число орбиталей n 2

Тип орбиталей

Число электронов 2n 2

s , p

s , p , d

s , p , d , f

s - Орбитали имеют форму сферы, p – форму гантели или двух соприкасающихся сфер, у d -орбиталей – 4 «лепестка», а у f -орбиталей – 8. В разрезе эти орбитали выглядят примерно так, как показано на рисунке.

Три р -орбитали ориентированы в пространстве вдоль осей прямоугольной системы координат и обозначаются соответственно p x , p y и p z ; d - и f -орбитали тоже располагаются под определенными углами друг к другу; сферические s -орбитали пространственной ориентации не имеют.

Каждый следующий элемент в периоде имеет атомный номер, на единицу превышающий номер предыдущего элемента, и содержит на один электрон больше. Этот дополнительный электрон занимает следующую орбиталь в порядке возрастания. Нужно иметь в виду, что электронные слои диффузны и энергия у некоторых орбиталей наружных слоев ниже, чем у внутренних. Поэтому, например, сначала заполняется s -орбиталь четвертого уровня (4 s -орбиталь), и только после нее завершается заполнение 3 d -орбитали. Порядок заполнения орбиталей, как правило, следующий: 1 s , 2 s , 2 p , 3 s , 3 p , 4 s , 3 d , 4 p , 5 s , 4 d , 5 p , 6 s , 4 f , 5 d , 6 p , 7 s . В записи, которую используют для представления электронной конфигурации элемента, верхний индекс при букве, обозначающей орбиталь, указывает число электронов на этой орбитали. Например, запись 1 s 2 2 s 2 2 p 5 означает, что на 1 s -орбитали атома находится два электрона, на 2 s -орбиталях – два, на 2 р – пять электронов. Нейтральные атомы, имеющие на внешней электронной оболочке 8 электронов (т.е. заполнены s - и р -орбитали), настолько стабильны, что практически не вступают ни в какие химические реакции. Таковы атомы инертных газов. Электронная конфигурация гелия 1 s 2 , неона – 2 s 2 2 p 6 , аргона – 3 s 2 3 p 6 , криптона – 4 s 2 3 d 10 4 p 6 , ксенона – 5 s 2 4 d 10 5 p 6 и, наконец, радона – 6 s 2 4 f 14 5 d 10 6 p 6 .

– область наиболее вероятного местонахождения электрона в атоме (атомная орбиталь) или в молекуле (молекулярная орбиталь).

Электрон движется в атоме вокруг ядра не по фиксированной линии-орбите, а занимает некоторую область пространства. Например, электрон в атоме водорода может с определенной вероятностью оказаться либо весьма близко к ядру, либо на значительном удалении, однако существует определенная область, где его появление наиболее вероятно. Графически орбиталь изображают в виде поверхности, очерчивающей область, где вероятность появления электрона наибольшая, иначе говоря, электронная плотность максимальна. У атома водорода орбиталь электрона имеет сферическую (шаровую) форму:

К настоящему моменту описано пять типов орбиталей: s , p , d, f и g . Названия первых трех сложились исторически, далее был выбран алфавитный принцип. Формы орбиталей вычислены методами квантовой химии.

Орбитали существуют независимо от того, находится на них электрон (занятые орбитали), или отсутствует (вакантные орбитали). Атом каждого элемента, начиная с водорода и заканчивая последним полученным на сегодня элементом, имеет полный набор всех орбиталей на всех электронных уровнях. Их заполнение электронами происходит по мере увеличения порядкового номера, то есть, заряда ядра.

s -Орбитали, как было показано выше, имеют сферическую форму и, следовательно, одинаковую электронную плотность в направлении каждой оси трехмерных координат:

На первом электронном уровне каждого атома находится только одна s- орбиталь. Начиная со второго электронного уровня помимо s- орбитали появляются также три р -орбитали. Они имеют форму объемных восьмерок, именно так выглядит область наиболее вероятного местонахождения р -электрона в районе атомного ядра. Каждая р -орбиталь расположена вдоль одной из трех взаимоперпендикулярных осей, в соответствии с этим в названии р -орбитали указывают с помощью соответствующего индекса ту ось, вдоль которой располагается ее максимальная электронная плотность:

В современной химии орбиталь – определяющее понятие, позволяющее рассматривать процессы образования химических связей и анализировать их свойства, при этом внимание сосредотачивают на орбиталях тех электронов, которые участвуют в образовании химических связей, то есть, валентных электронов, обычно это электроны последнего уровня.

У атома углерода в исходном состоянии на втором (последнем) электронном уровне находится два электрона на s -орбитали (отмечены синим цветом) и по одному электрону на двух р -орбиталях (отмечены красным и желтым цветом), третья орбиталь – р z -вакантная:

Минкин В.И., Симкин Б.Я., Миняев P.M. Теория строения молекул . Электронные оболочки . М., «Мир», 1979
Бучаченко А.Л. Химия как музыка, или химические ноты и новые мелодии нового века . Сборник научно-популярных статей, Москва, 2002
Российская наука: дорога жизни . Сборник научно-популярных статей. М., «Октопус», 2002

Найти "ОРБИТАЛЬ " на

В химии и физике атомные орбитали - это функция, называемая волновой, которая описывает свойства, характерные для не более двух электронов в окрестностях или системы ядер, как в молекуле. Орбиталь часто изображается как трехмерная область, внутри которой существует 95-процентная вероятность нахождения электрона.

Орбитали и орбиты

Когда планета движется вокруг Солнца, она очерчивает путь, называемый орбитой. Подобным образом атом можно представить в виде электронов, кружащих на орбитах вокруг ядра. На самом деле все обстоит иначе, и электроны находятся в областях пространства, известных как атомные орбитали. Химия довольствуется упрощенной моделью атома для расчета волнового уравнения Шредингера и, соответственно, определения возможных состояний электрона.

Орбиты и орбитали звучат похоже, но они имеют совершенно разные значения. Крайне важно понимать разницу между ними.

Невозможность изображения орбит

Чтобы построить траекторию движения чего-то, нужно точно знать, где объект находится, и быть в состоянии установить, где он будет через мгновение. Для электрона это сделать невозможно.

Согласно нельзя точно знать, где частица находится в данный момент и где она окажется потом. (На самом деле принцип говорит о том, что невозможно определить одновременно и с абсолютной точностью ее момент и импульс).

Поэтому невозможно построить орбиту движения электрона вокруг ядра. Является ли это большой проблемой? Нет. Если что-то невозможно, это следует принять и найти способы обойти.

Электрон водорода - 1s-орбиталь

Предположим, имеется один атом водорода и в определенный момент времени графически запечатлевается положение одного электрона. Вскоре после этого, процедура повторяется, и наблюдатель обнаруживает, что частица находится в новом положении. Как она из первого места попала во второе, неизвестно.

Если продолжать действовать таким образом, то постепенно сформируется своего рода 3D-карта мест вероятного нахождения частицы.

В случае электрон может находиться в любом месте в пределах сферического пространства, окружающего ядро. На диаграмме показано поперечное сечение этого сферического пространства.

95 % времени (или любой другой процент, так как стопроцентную уверенность могут обеспечить лишь размеры Вселенной) электрон будет находиться в пределах довольно легко определяемой области пространства, достаточно близкой к ядру. Такой участок называется орбиталью. Атомные орбитали - это области пространства, в которых существует электрон.

Что он там делает? Мы не знаем, не можем знать и поэтому просто игнорируем эту проблему! Мы можем сказать лишь, что если электрон находится на конкретной орбитали, то он будет обладать определенной энергией.

Каждая орбиталь имеет название.

Пространство, занимаемое электроном водорода, называется 1s-орбиталью. Единица здесь обозначает то, что частица находится на ближайшем к ядру энергетическом уровне. S говорит о форме орбиты. S-орбитали сферически симметричны относительно ядра - по крайней мере, как полый шар из довольно плотного материала с ядром в его центре.

2s

Следующая орбиталь - 2s. Она похожа на 1s, за исключением того, что область наиболее вероятного нахождения электрона расположена дальше от ядра. Это орбиталь второго энергетического уровня.

Если присмотреться внимательно, то можно заметить, что ближе к ядру есть еще один регион несколько более высокой плотности электрона («плотность» является еще одним способом обозначения вероятности того, что эта частица присутствует в определенном месте).

2s-электроны (и 3s, 4s и т. д.) проводят часть своего времени намного ближе к центру атома, чем можно было бы ожидать. Результатом этого является небольшое снижение их энергии на s-орбиталях. Чем ближе ​​электроны приближаются к ядру, тем меньше становится их энергия.

3s-, 4s-орбитали (и т. д.) располагаются все дальше от центра атома.

Р-орбитали

Не все электроны населяют s-орбитали (на самом деле, очень немногие из них там находятся). На первом единственным доступным местом расположения для них является 1s, на втором добавляются 2s и 2p.

Орбитали этого типа скорее походят на 2 одинаковых воздушных шара, связаны друг с другом на ядре. На диаграмме показано поперечное сечение 3-мерной области пространства. Опять же, орбиталь показывает лишь область с 95-процентной вероятностью нахождения отдельного электрона.

Если представить себе горизонтальную плоскость, которая проходит через ядро таким образом, что одна частью орбиты будет находиться над плоскостью, а другая под ней, то существует нулевая вероятность нахождения электрона на этой плоскости. Так как же частица попадает из одной части в другую, если он никогда не сможет пройти через плоскость ядра? Это связано с ее волновой природой.

В отличие от s-, p-орбиталь имеет определенную направленность.

На любом энергетическом уровне можно иметь три абсолютно эквивалентные р-орбитали, расположенные под прямым углом друг к другу. Они произвольно обозначаются символами р х, р у и p z . Так принято для удобства - то, что подразумевается под направлениями X, Y или Z, постоянно изменяется, т. к. атом беспорядочно движется в пространстве.

Р-орбитали на втором энергетическом уровне называются 2р х, 2р у и 2p z . Есть подобные орбитали и на последующих - 3p x , 3p y , 3p z , 4p x , 4p y , 4p z и так далее.

Все уровни, за исключением первого, имеют р-орбитали. На более высоких «лепестки» вытянутее, с наиболее вероятным местом нахождения электрона на большем удалении от ядра.

d- и f-орбитали

В дополнение к s- и р-орбиталям, существует два других набора орбиталей, доступных для электронов на более высоких уровнях энергии. На третьем возможно существование пяти d-орбиталей (со сложными формами и именами), а также 3s- и 3p-орбиталей (3p x , 3p y , 3p z). В общей сложности их здесь имеется 9.

На четвертом, наряду с 4s и 4p и 4d появляются 7 дополнительных f-орбиталей - всего 16, доступных также на всех более высоких энергетических уровнях.

Размещение электронов на орбиталях

Атом можно представить, как очень причудливый дом (подобный перевернутой пирамиде) с ядром, живущим на первом этаже, и различными комнатами на верхних этажах, занимаемых электронами:

  • на первом этаже есть только 1 комната (1s);
  • на втором комнат уже 4 (2s, 2р х, 2р у и 2p z);
  • на третьем этаже расположено 9 комнат (одна 3s, три 3р и пять 3d-орбиталей) и так далее.

Но комнаты не очень большие. Каждая из них может содержать только 2 электрона.

Удобный способ показать атомные орбитали, в которых находятся данные частицы - это нарисовать «квантовые ячейки».

Квантовые ячейки

Атомные орбитали могут быть представлены в виде квадратов с электронами в них, изображенными в виде стрелок. Часто стрелки, направленные вверх и вниз, используются, чтобы показать, что эти частицы отличаются друг от друга.

Необходимость наличия разных электронов в атоме является следствием квантовой теории. Если они находятся на разных орбиталях - это прекрасно, но если они расположились на одной, то между ними должно существовать какой-то тонкое различие. Квантовая теория наделяет частицы свойством, которое носит название «спин» - именно его и обозначает направление стрелок.

1s-орбиталь с двумя электронами изображается в виде квадрата с двумя стрелками, направленными вверх и вниз, но ее также можно записать еще быстрее как 1s 2 . Это читается как «один s два», а не как «один s в квадрате». Не следует путать числа в этих обозначениях. Первое обозначает энергетический уровень, а второе - количество частиц на орбитали.

Гибридизация

В химии гибридизация является концепцией смешивания атомных орбиталей в новые гибридные, способные спаривать электроны с формированием химических связей. Sp-гибридизация объясняет химические связи таких соединений, как алкины. В этой модели атомные орбитали углерода 2s и 2p смешиваются, образуя две sp-орбитали. Ацетилен C 2 H 2 состоит из sp-sp-переплетения двух атомов углерода с образованием σ-связи и двух дополнительных π-связей.

Атомные орбитали углерода в предельных углеводородах имеют одинаковые гибридные sp 3 -орбитали, имеющие форму гантели, одна часть которой намного больше другой.

Sp 2 -гибридизация подобна предыдущим и образована смешением одной s и двух p-орбиталей. Например, в молекуле этилена образуются три sp 2 - и одна p-орбиталь.

Атомные орбитали: принцип заполнения

Представляя себе переходы от одного атома к другому в периодической таблице химических элементов, можно установить электронную структуру следующего атома путем размещения дополнительной частицы в следующую доступную орбиталь.

Электроны, прежде чем заполнить более высокие энергетические уровни, занимают более низкие, расположенные ближе к ядру. Там, где есть выбор, они заполняют орбитали по отдельности.

Такой порядок заполнения известен под названием правила Хунда. Оно применяется только тогда, когда атомные орбитали обладают равными энергиями, а также помогает минимизировать отталкивание между электронами, что делает атом более стабильным.

Следует обратить внимание на то, что у s-орбитали энергия всегда немного меньше, чем у р на том же энергетическом уровне, поэтому первые всегда заполняются раньше последних.

Что действительно странно, так это положение 3d-орбиталей. Они находятся на более высоком уровне, чем 4s, и поэтому 4s-орбитали заполняются первыми, а затем уже все 3d- и 4p-орбитали.

Такая же путаница происходит и на более высоких уровнях с большим количеством переплетений между ними. Поэтому, например, атомные орбитали 4f не заполняются, пока не будут заняты все места на 6s.

Знание порядка заполнения имеет центральное значение для понимания того, как описывать электронные структуры.

Атомная орбиталь - одноэлектронная волновая функция, полученная решением уравнения Шрёдингера для данного атома; задаётся: главным n, орбитальным l, и магнитным m - квантовыми числами. Единственный электрон атома водорода образует вокруг ядра сферическую орбиталь - шарообразное электронное облако, вроде неплотно намотанного клубка пушистой шерсти или ватного шарика.

Сферическую атомную орбиталь ученые договорились называть s-орбиталью . Она самая устойчивая и располагается довольно близко к ядру. Чем больше энергия электрона в атоме, тем быстрее он вращается, тем сильнее вытягивается область его пребывания и наконец превращается в гантелеобразную p-орбиталь :

Гибридизация орбиталей - гипотетический процесс смешения разных (s, p, d, f) орбиталей центрального атома многоатомной молекулы с возникновением одинаковых орбиталей, эквивалентных по своим характеристикам.

5.Тетраэдрическая модель атома углерода. Теория строения Бутлерова

Теория химического строения органических веществ была сформулирована А. М. Бутлеровым в 1861 году.

Основные положения теории строения сводятся к следующему:

1) в молекулах атомы соединены друг с другом в определенной последовательности в соответствии с их валентностью. Порядок связи атомов называется химическим строением;

2) свойства вещества зависят не только от того, какие атомы и в каком количестве входят в состав его молекулы, но и от того, в каком порядке они соединены между собой, т. е. от химического строения молекулы;

3) атомы или группы атомов, образовавшие молекулу, взаимно влияют друг на друга.

Основные представления о химическом строении, заложенные Бутлеровым, были дополнены Вант-Гоффом И Ле-Белем (1874), которые развили идею о пространственном расположении атомов в молекуле органич. в-ва и поставили вопрос о пространственной конфигурации и конформации молекул. Работа Вант-Гоффа положила начало направлению орг. Химии – стереохимии – учению о пространственном строении.Вант-Гофф предлоил тетраэдрическую модель атома углерода – четыре валентности атома в углерода в метане направлены к четырем углам тетраэдра, в центре которого находится углеродный атом, а на вершинах – атомы водорода.

Непредельные карбоновые кислоты

Химические свойства.
Химические свойства непредельных карбоновых кислот обусловлены как свойствами карбоксильной группы, так и свойствами двойной связи. Специфическими свойствами обладают кислоты с близко расположенной от карбоксильной группы двойной связью - альфа, бета-непредельные кислоты. У этих кислот присоединение галогеноводородов и гидратация идут против правила Марковникова:

СН 2 =СН-СООН + НВr -> СН 2 Вr-СН 2 -СООН

При осторожном окислении образуются диоксикислоты:

СН 2 =СН-СООН + [О] + Н 2 0 -> НО-СН 2 -СН(ОН)-СООН

При энергичном окислении происходит разрыв двойной связи и образуется смесь разных продуктов, по которым можно установить положение двойной связи. Олеиновая кислота С 17 Н 33 СООН - одна из важнейших высших непредельных кислот. Это - бесцветная жидкость, затвердевает на холоде. Ее структурная формула: СН 3 -(СН 2) 7 -СН=СН-(СН 2) 7 -СООН.

Производные карбоновых кислот

Производные карбоновых кислот - это соединения, в которых гидроксильная группа карбоновой кислоты замещена другой функциональной группой.

Просты́е эфи́ры - органические вещества, имеющие формулу R-O-R", где R и R" - углеводородные радикалы. Следует, однако, учитывать, что такая группа может входить в состав других функциональных групп соединений, не являющихся простыми эфирами

Сло́жные эфи́ры (или эсте́ры ) - производные оксокислот (как карбоновых, так и неорганических) с общей формулой R k E(=O) l (OH) m , где l ≠ 0, формально являющиеся продуктами замещения атомов водорода гидроксилов -OH кислотной функции на углеводородный остаток (алифатический, алкенильный, ароматический или гетероароматический); рассматриваются также как ацилпроизводные спиртов. В номенклатуре IUPAC к сложным эфирам относят также ацилпроизводные халькогенидных аналогов спиртов (тиолов, селенолов и теллуролов) .

Отличаются от простых эфиров (этеров), у которых два углеводородных радикала соединены атомом кислорода (R 1 -O-R 2)

Ами́ды - производные оксокислот (как карбоновых, так и минеральных) R k E(=O) l (OH) m , (l ≠ 0), формально являющиеся продуктами замещения гидроксильных групп -OH кислотной функции на аминогруппу (незамещенную и замещенную); рассматриваются также как ацилпроизводные аминов. Соединения с одним, двумя или тремя ацильными заместителями у атома азота называются первичными, вторичными и третичными амидами, вторичные амиды именуются также имидами.

Амиды карбоновых кислот - карбоксамиды RCO-NR 1 R 2 (где R 1 и R 2 - водород, ацил либо алкильный, арильный или другой углеводородный радикал) обычно именуются амидами, в случае других кислот в соответствии с рекомендациями IUPAC при именовании амида в качестве префикса указывается название кислотного остатка, например, амиды сульфокислот RS(=O 2 NH 2 именуются сульфамидами.

Хлорангидри́д карбо́новой кислоты́ (ацилхлорид) - производное карбоновой кислоты, в которой гидроксильная группа -OH в карбоксильной группе -COOH заменена на атом хлора. Общая формула R-COCl. Первый представитель с R=H (хлористый формил) не существует, хотя смесь CO и HCl в реакции Гаттермана - Коха ведёт себя подобно хлорангидриду муравьиной кислоты.

Получение

R-COOH + SOCl 2 → R-COCl + SO 2 + HCl

Нитри́лы - органические соединения общей формулы R-C≡N, формально являющиеся C-замещенными производными синильной кислоты HC≡N

Капрон (поли-ε-капроамид, найлон-6, полиамид 6)- синтетическое полиамидное волокно, получаемое из нефти, продукт поликонденсации капролактама

[-HN(CH 2) 5 CO-] n

В промышленности его получают путем полимеризации производного

Нейло́н (англ. nylon ) - семейство синтетических полиамидов, используемых преимущественно в производстве волокон.

Наиболее распространены два вида нейлона: полигексаметиленадипинамид (анид (СССР/Россия), найлон 66 (США)), часто называемый собственно нейлоном и поли-ε-капроамид (капрон (СССР/Россия), найлон 6 (США)). Известны также другие виды, например, поли-ω-энантоамид (энант (СССР/Россия), найлон 7 (США)) и поли-ω-ундеканамид (ундекан (СССР/Россия), найлон 11 (США), рильсан (Франция, Италия)

Формула волокна из анида: [-HN(CH 2) 6 NHOC(CH 2) 4 CO-] n . Анид синтезируется поликонденсацией адипиновой кислоты и гексаметилендиамина. Для обеспечения стехиометрического отношения реагентов 1:1, необходимого для получения полимера с максимальной молекулярной массой, используется соль адипиновой кислоты и гексаметилендиамина (АГ-соль ):

R = (CH 2) 4 , R" = (CH 2) 6

Формула волокна из капрона (найлона-6): [-HN(CH 2) 5 CO-] n . Синтез капрона из капролактама проводится гидролитической полимеризацией капролактама по механизму «раскрытие цикла - присоединение»:

Пластмассовые изделия могут изготавливаться из жёсткого нейлона - эколона, путём впрыскивания в форму жидкого нейлона под большим давлением, чем достигается бо́льшая плотность материала.

Классификафия


КЕТОКИСЛОТЫ - органические вещества, в состав молекул которых входят карбоксильные (COOH-) и карбонильные (-CO-) группы; служат предшественниками многих соединений, выполняющих важные биологические функции в организме. Существенные нарушения обмена веществ, имеющие место при ряде патологических состояний, сопровождаются повышением концентрации в организме человека тех или иных кетокислот

кето енольная таутомерия

Методы получения Альфа и Бета кетокислот

α-Кетокислоты получают окислением α-гидроксикислот.

β-Кетокислоты ввиду своей неустойчивости получают из сложных эфиров конденсацией Кляйзена.

В органической химии термин «реакция окисления» подразумевает, что окисляется именно органическое соединение, при этом окислителем в большинстве случаев является неорганический реагент.

Алкены

KMnO 4 и H 2 O (нейтральная среда)

3СH2=CH2 + 2KMnO 4 + 4H 2 O = 3C 2 H 4 (OH) 2 + 2MnO 2 + 2KOH - полное уравнение

(кислая среда)

идет разрыв двойной связи:

R-СH 2 =CH 2 -R + [O] → 2R-COOH - схематичное уравнение

Алкиларены

Эитлбензол- алкиларен

Кетоны

Кетоны к действию окислителей весьма устойчивы и окисляюся лишь сильными окислителями при нагревании. В процессе окисления происходит разрыв связей C-C по обе стороны карбонильной группы и в общем случае получается смесь четырех карбоновых кислот:

Окислению кетона предшествует его енолизация, которая может проходить как в щелочной, так и в кислой среде:

Ви́нная кислота́ (диоксиянтарная кислота, тартаровая кислота, 2, 3-дигидроксибутандиовая кислота) НООС-СН(ОН)-СН(ОН)-СООН - двухосновная оксикислота. Соли и анионы винной кислоты называют тартратами.

Известны три стереоизомерные формы винной кислоты: D-(-)-энантиомер (слева вверху), L-(+)-энантиомер (справа вверху) и мезо -форма (мезовинная кислота):


Диастереомеры - стереоизомеры, не являющиеся зеркальными отражениями друг друга . Диастереомерия возникает, когда соединение имеет несколько стереоцентров. Если два стереоизомера имеют противоположные конфигурации всех соответствующих стереоцентров, то они являются энантиомерами.