Движение по наклонной плоскости. Движение тела по наклонной плоскости

Проецирование сил. Движение по наклонной плоскости

Задачи по динамике.

I и II закон Ньютона.

Ввод и направление осей.

Неколлинеарные силы.

Проецирование сил на оси.

Решение систем уравнений.

Самые типовые задачи по динамике

Начнем с I и II законов Ньютона.

Откроем учебник физики и прочтем. I закон Ньютона: существуют такие инерциальные системы отсчета в которых... Закроем такой учебник, я тоже не понимаю. Ладно шучу, понимаю, но объясню проще.

I закон Ньютона: если тело стоит на месте либо движется равномерно (без ускорения), сумма действующих на него сил равна нулю.

Вывод: Если тело движется с постоянной скоростью или стоит на месте векторная сумма сил будет ноль.

II закон Ньютона: если тело движется равноускоренно или равнозамедленно (с ускорением), сумма сил, действующих на него, равна произведению массы на ускорение.

Вывод: Если тело двигается с изменяющейся скоростью, то векторная сумма сил, которые как-то влияют на это тело (сила тяги, сила трения, сила сопротивления воздуха), равна массе этого тело умножить на ускорение.

При этом одно и то же тело чаще всего движется по-разному (равномерно или с ускорением) в разных осях. Рассмотрим именно такой пример.

Задача 1. Определите коэффициент трения шин автомобиля массой 600 кг, если сила тяги двигателя 4500 Н вызывает ускорение 5 м/с².

Сделаем рисунок, покажем силы, которые дествуют на машину.


На Ось Х: движение с ускорением

На Ось Y: нет движения (здесь координата, как была ноль так и останется, перемещение будет тольков вдоль оси Х)

Те силы, направление которых совпадает с направлением осей, будут с плюсом, в противоположном случае - с минусом.

Fтр = μN, где N - сила реакции опоры. На оси Y: N = mg, тогда в данной задаче Fтр = μmg.

Получаем, что:

Коэффициент трения - безразмерная величина. Следовательно, единиц измерения нет.

Задача 2. Груз массой 5кг, привязанный к невесомой нерастяжимой нити, поднимают вверх с ускорением 3м/с². Определите силу натяжения нити.

Сделаем рисунок, покажем силы, которые дествуют на груз

T - сила натяжения нити

Разберемся с направлением сил на ось Y:

Выразим T и подставим числительные значения:

Самое главное не запутаться с направлением сил (по оси или против), все остальное сделает калькулятор или всеми любимый столбик.

Далеко не всегда все силы, действующие на тело, направлены вдоль осей.

Простой пример: мальчик тянет санки

Если мы так же построим оси X и Y, то сила натяжения (тяги) не будет лежать ни на одной из осей.

Чтобы спроецировать силу тяги на оси, вспомним прямоугольный треугольник.

Отношение противолежащего катета к гипотенузе - это синус.

Отношение прилежащего катета к гипотенузе - это косинус.

Сила тяги на ось Y - отрезок (вектор) BC.

Сила тяги на ось X - отрезок (вектор) AC.

Если это непонятно, посмотрите задачу №4.

Чем длинее будет верека и, соответсвенно, меньше угол α, тем проще будет тянуть санки. Идеальный вариант, когда веревка параллельна земле , ведь сила, которая действуют на ось X- это Fнcosα. Чем больше будет этот катет, тем сильнее горизонтальная сила.

Задача 3. Брусок подвешен на двух нитях. Сила натяжения первой составляет 34Н, второй - 21Н, θ1 = 45°, θ2 = 60°. Найдите массу бруска.

Введем оси и спроецируем силы:

Получаем два прямоугольных треугольника. Гипотенузы AB и KL - силы натяжения. LM и BC - силы натяжения, спроецированные на ось X, AC и KM - на ось Y.

Задача 4. Брусок массой 5 кг (масса в этой задаче не нужна, но, чтобы в уравнениях все было известно, возьмем конкретное значение) соскальзывает с плоскости, которая наклонена под углом 45°, с коэффициентом трения μ = 0,1. Найдите ускорение движения бруска?

Когда же есть наклонная плоскость, оси (X и Y) лучше всего направить по направлению движения тела. Некоторые силы в данном случае (здесь это mg) не будут лежать ни на одной из осей. Эту силу нужно спроецировать, чтобы она имела такое же направление, как и взятые оси.
Всегда ΔABC подобен ΔKOM в таких задачах (по прямому углу и углу наклона плоскости).

Рассмотрим поподробнее ΔKOM:

Получим, что KO лежит на оси Y, и проекция mg на ось Y будет с косинусом. А вектор MK коллинеарен (отрезок МК параллелен) оси X, проекция mg на ось X будет с синусом, и вектор МК направлен против оси X (то есть будет с минусом).

Не забываем, что, если направления оси и силы не совпадают, ее нужно взять с минусом!

Из оси Y выражаем N и подставляем в уравнение оси X, находим ускорение:

Как видно, массу в числителе можно вынести за скобки и сократить со знаменаталем. Тогда знать ее не обязательно, получить ответ реально и без нее.
Да-да, в идеальных условиях (когда нет силы сопротивления воздуха и т.п.), что перо, что гиря скатятся (упадут) за одно и тоже время.

Задача 5. Автобус съезжает с горки под уклоном 60° с ускорением 8 м/с² и с силой тяги 8 кН. Коэффициент трения шин об асфальт равен 0,4. Найдите массу автобуса.

Сделаем рисунок с силами:

Введем оси X и Y. Спроецируем mg на оси:


Запишем второй закон Ньютона на X и Y:

Задача 6. Поезд движется по закруглению радиуса 800 м со скоростью 72 км/ч. Определить, на сколько внешний рельс должен быть выше внутреннего. Расстояние между рельсами 1,5 м.

Самое сложное - понять, какие силы куда действуют, и как угол влияет на них.

Вспомни, когда едешь по кругу на машине или в автобусе, куда тебя выталкивает? Для этого и нужен наклон, чтобы поезд не упал набок!

Угол α задает отношение разницы высоты рельсов к расстоянию между ними (если бы рельсы находились горизонтально)

Запишем какие силы действуют на оси:

Ускорение в данной задачи центростремительное!

Поделим одно уравнение на другое:

Тангенс - это отношение противолежащего катета к прилежащему:

Как мы выяснили, решение подобных задач сводится к расстановке направлений сил, проецированию их на оси и к решению систем уравнений, почти сущий пустяк.

В качестве закрепления материала решите несколько похожих задач с подсказками и ответами.

Итак, постараюсь подробно описать ход моих рассуждений по этому вопросу. На первом уроке ставлю перед учащимися вопрос: как может тело двигаться по наклонной плоскости? Вместе отвечаем: скатываться равномерно, с ускорением; покоиться на наклонной плоскости; удерживаться на ней; съезжать под действием силы тяги равномерно, с ускорением; заезжать под действием силы тяги равномерно, с ускорением. На рисунках на двух-трех примерах показываем, какие при этом на тело действуют силы. Попутно ввожу понятие скатывающей равнодействующей. Записываем уравнение движения в векторной форме, затем в нем заменяем сумму скатывающей равнодействующей (обозначайте, как вам нравится). Это делаем по двум причинам: во-первых, нет необходимости проецировать векторы сил на ось и решать два уравнения; во-вторых, правильно будет показано соотношение сил, исходя из условия задачи.

Покажу на конкретных примерах. Пример 1: тело под действием силы тяги съезжает равномерно (Рисунок 1).

Ученики первым делом должны усвоить алгоритм построения рисунка. Изображаем наклонную плоскость, посередине нее – тело в виде прямоугольника, через середину тела параллельно наклонной плоскости проводим ось . Направление оси не существенно, но в случае равноускоренного движения лучше показать в сторону вектора , чтобы в алгебраической форме в уравнении движения в правой части перед был знак «плюс». Далее строим силы. Силу тяжести проводим вертикально вниз произвольной длины (требую рисунки делать крупными, чтобы всем было все понятно). Затем из точки приложения силы тяжести – перпендикуляр к оси , вдоль которого пойдет сила реакции опоры . Параллельно этому перпендикуляру из конца вектора проводим пунктирную линию до пересечения с осью . Из этой точки – пунктирную линию, параллельную до пересечения с перпендикуляром – получаем вектор правильной длины. Таким образом, мы построили параллелограмм на векторах и , автоматически указав правильную величину силы реакции опоры и построив по всем правилам векторной геометрии равнодействующую этих сил , которую я называю скатывающей равнодействующей (диагональ, совпадающая с осью ). В этом месте, воспользовавшись методом из учебника, на отдельном рисунке показываю силу реакции опоры произвольной длины: сначала короче, чем нужно, а потом длиннее, чем нужно. Показываю равнодействующую силы тяжести и силы реакции опоры: в первом случае она направлена вниз под углом к наклонной плоскости (Рисунок 2), во втором случае – вверх под углом к наклонной плоскости (Рисунок 3).

Делаем очень важный вывод: соотношение между силой тяжести и силой реакции опоры должно быть таким, чтобы тело под их действием (или под действием скатывающей равнодействующей) в отсутствие других сил двигалось вниз вдоль наклонной плоскости. Далее я спрашиваю: какие еще силы действуют на тело? Ребята отвечают: сила тяги и сила трения. Я задаю следующий вопрос: какую силу покажем сначала, а какую потом? Добиваюсь правильного и обоснованного ответа: сначала в этом случае надо показать силу тяги, а затем силу трения, модуль которой будет равен сумме модулей силы тяги и скатывающей равнодействующей: , т.к. по условию задачи тело движется равномерно, следовательно, равнодействующая всех сил, действующих на тело, должна равняться нулю согласно первому закону Ньютона. Для контроля задаю провокационный вопрос: так сколько сил действует на тело? Ребята должны ответить – четыре (не пять!): сила тяжести, сила реакции опоры, сила тяги и сила трения. Теперь записываем уравнение движения в векторной форме согласно первому закону Ньютона:

Заменяем сумму векторов скатывающей равнодействующей :

Получаем уравнение, в котором все векторы параллельны оси . Теперь запишем это уравнение через проекции векторов на ось :

Эту запись в дальнейшем можно пропускать. Заменим в уравнении проекции векторов на их модули с учетом направлений:

Пример 2 : тело под действием силы тяги заезжает на наклонную плоскость с ускорением (Рисунок 4).

В этом примере ученики должны сказать, что после построения силы тяжести, силы реакции опоры и скатывающей равнодействующей следующей надо показать силу трения, последним – вектор силы тяги, который должен быть больше суммы векторов , т.к. равнодействующая всех сил должна быть направлена так же, как вектор ускорения согласно второму закону Ньютона. Уравнение движения тела должны записать согласно второму закону Ньютона:

Если есть возможность на уроке рассмотреть другие случаи, то не пренебрегаем этой возможностью. Если нет, то даю это задание домой. Кто-то может рассмотреть все оставшиеся случаи, кто-то некоторые – право выбора учеников. На следующем уроке проверяем, исправляем ошибки и переходим к решению конкретных задач, предварительно выразив из векторных треугольников и :

Равенство (2) желательно проанализировать для различных углов . При имеем: , как при движении горизонтально под действием горизонтальной силы тяги. С ростом угла его косинус уменьшается, следовательно, уменьшается и сила реакции опоры и становится все меньше и меньше силы тяжести. При угле она равна нулю, т.е. тело не действует на опору и опора, соответственно, «не реагирует».

Предвижу вопрос оппонентов: как применить эту методику для случаев, когда сила тяги горизонтальна или направлена под углом к наклонной плоскости? Отвечу на конкретных примерах.

а) Тело с ускорением затаскивают на наклонную плоскость, прикладывая силу тяги горизонтально (Рисунок 5).

Горизонтальную силу тяги раскладываем на две составляющие: вдоль оси – и перпендикулярную оси – (операция, обратная построению равнодействующей перпендикулярных сил). Записываем уравнение движения:

Заменяем скатывающей равнодействующей, а вместо пишем :

Из векторных треугольников выражаем : и : .

Под действием горизонтальной силы тело не только поднимается вверх по наклонной плоскости, но еще и дополнительно прижимается к ней. Поэтому возникает дополнительная сила давления, равная модулю вектора и, согласно третьему закону Ньютона, дополнительная сила реакции опоры : . Тогда сила трения будет: .

Уравнение движения примет вид:

Вот мы полностью расшифровали уравнение движения. Теперь осталось выразить из него искомую величину. Попробуйте решить эту задачу традиционным способом и вы получите такое же уравнение, только решение будет громоздче.

б) Тело стаскивают равномерно с наклонной плоскости, прикладывая силу тяги горизонтально (Рисунок 6).

В этом случае сила тяги кроме стаскивания тела вниз вдоль наклонной плоскости еще и отрывает его от наклонной плоскости. Итак, окончательное уравнение имеет вид:

в) Тело затаскивают равномерно на наклонную плоскость, прикладывая силу тяги под углом к наклонной плоскости (Рисунок 7).

Предлагаю рассмотреть конкретные задачи, дабы еще убедительнее прорекламировать мой методический подход к решению таких задач. Но прежде обращаю внимание на алгоритм решения (я думаю, все учителя физики на него обращают внимание учеников, и все мое повествование было подчинено этому алгоритму):

1) внимательно прочитав задачу, выяснить, как движется тело;
2) сделать рисунок с правильным, исходя из условия задачи, изображением сил;
3) записать уравнение движения в векторной форме согласно первому или второму закону Ньютона;
4) записать это уравнение через проекции векторов сил на ось x (этот шаг в дальнейшем, когда умение решать задачи по динамике будет доведено до автоматизма, можно опустить);
5) выразить проекции векторов через их модули с учетом направлений и записать уравнение в алгебраической форме;
6) выразить модули сил по формулам (если есть необходимость);
7) выразить искомую величину.

Задача 1. За какое время тело массой соскальзывает с наклонной плоскости высотой и углом наклона , если по наклонной плоскости с углом наклона оно движется равномерно?

Каково было бы решать эту задачу привычным способом!

Задача 2. Что легче: удержать тело на наклонной плоскости или двигать его по ней равномерно вверх?

Здесь при объяснении без скатывающей равнодействующей, на мой взгляд, не обойтись.

Как видно из рисунков, в первом случае сила трения помогает удерживать тело (направлена в ту же сторону, что и удерживающая сила), во втором случае она вместе со скатывающей равнодействующей направлена против движения. В первом случае , во втором случае .

Цель работы – экспериментальное определение работы силы трения при скольжении груза по наклонной плоскости.

1. Теоретическая часть

Рис.1. Брусок на наклонной плоскости

На брусок массой m , находящийся на наклонной плоскости, действуют несколько сил (рис.1) – сила тяжести
, сила нормальной реакции опорыи сила трения. Под действием этих сил брусок может двигаться или находиться в состоянии покоя.

Рассмотрим сначала состояние покоя, когда равнодействующая всех сил равна нулю:

(1)

где
– сила трения покоя. Введем оси координат так, как показано на рис. 1. Поскольку
то проекция уравнения (1) на осьдает

Т.о. в состоянии покоя сила трения покоя уравновешивает скатывающую силу

Если увеличивать угол наклона
то при некотором его предельном значении
этот баланс нарушится, и брусок начнет соскальзывать с наклонной плоскости. В момент начала соскальзывания сила трения покоя
принимает максимальное значение, равное силе трения скольжения

.

По закону Амонтона - Кулона сила трения скольжения по модулю равна

,

где – коэффициент трения.

Скольжение бруска по наклонной плоскости описывается уравнением динамики

(2)

Проекция уравнения (2) на ось y дает

.

.

На рис.2 показана зависимость сил трения покоя и трения скольжения от угла наклона
Каждая их этих зависимостей имеет свою область определения. Для функции
она лежит в пределах
. Область определения функции
лежит в интервале
. Вне этих областей обе функции не имеют физического смысла.

Рис.2. Зависимости
и
в функции от угла

Как видно из рис. 2, с ростом угла
сила трения покоя изменяется по синусоидальному закону, а сила трения скольжения изменяется по закону косинуса. Пересечение этих двух функций происходит при угле
, при достижении которого брусок начнет скользить вниз по наклонной плоскости. Значение
находится из равенства

откуда можно найти коэффициент трения

(3)

Измерив длину пути l бруска по наклонной плоскости и угол ее наклона
, можно определить работу силы трения по предельному углу
и соответствующему коэффициенту трения

Теперь заставим брусок массы m 1 скользить не вниз, а вверх по наклонной плоскости. Для этого (см. рис. 3) привяжем к бруску конец нити, перекинутой через блок; на другом конце нити привяжем груз массы m 2 , при опускании которого нить будет тянуть брусок вверх по наклонной плоскости с ускорением а .

Рис. 3. Схема системы наклонная плоскость – брусок-груз.

На длине пути l вдоль наклонной плоскости (координата ) брусок массойm 1 , при перемещении из т. 1- состояния покоя в т. 2 приобретает некоторую скорость и соответственно кинетическую энергию
Кинетическая энергия может быть рассчитана как суммарная работа всех сил, приложенных к бруску:

. –работа скатывающей силы,

так как

-работа силы натяжения нити.

Далее будем считать, что нить и блок невесомы, поэтому натяжение нити по обе стороны от блока одинаково: Т 1 = Т 2 = Т . Уравнение движения (второй закон Ньютона) груза m 2 в проекции на ось у дает

откуда имеем значение Т

Высота опускания груза по законам кинематики равна:

Поэтому ускорение груза можно выразить через измеряемые величины - высоту h и время  спуска груза m 2 -

Все тела рассматриваемой системы связаны нерастяжимой нитью и, следовательно, движутся с одинаковой скоростью и ускорением. Поэтому скорость бруска массы m 1 в конце отрезка пути длиной l (положение 2) равна

.

С учетом измеренных и рассчитанных величин уравнение (5) перепишется в виде

,

Учтем, что длина участка 1-2 подъема бруска по наклонной плоскости равна высотеопускания груза (
), тогда из (5) получимвыражение для определения работы силы трения
по кинематическим параметрам (углу наклона
,длине и времени )перемещения бруска по наклонной плоскости

. (7)

Приборы и пренадлежности:

1. Лабораторная установка.

Напомним: когда говорят о гладкой поверхности, подразумевают, что трением между телом и этой поверхностью можно пренебречь.

На тело массой m, находящееся на гладкой наклонной плоскости, действуют сила тяжести m и сила нормальной реакции (рис. 19.1).

Удобно ось x направить вдоль наклонной плоскости вниз, а ось y – перпендикулярно наклонной плоскости вверх (рис. 19.1). Угол наклона плоскости обозначим α.

Уравнение второго закона Ньютона в векторной форме имеет вид

1. Объясните, почему справедливы следующие уравнения:


2. Чему равна проекция ускорения тела на ось x?

3. Чему равен модуль силы нормальной реакции?

4. При каком угле наклона ускорение тела на гладкой плоскости в 2 раза меньше ускорения свободного падения?

5. При каком угле наклона плоскости сила нормальной реакции в 2 раза меньше силы тяжести?

При выполнении следующего задания полезно заметить, что ускорение тела, находящегося на гладкой наклонной плоскости, не зависит от направления начальной скорости тела.

6. Шайбу толкнули вверх вдоль гладкой наклонной плоскости с углом наклона α. Начальная скорость шайбы v 0 .
а) Какой путь пройдет шайба до остановки?
б) Через какой промежуток времени шайба вернется в начальную точку?
в) С какой скоростью шайба вернется в начальную точку?

7. Брусок массой m находится на гладкой наклонной плоскости с углом наклона α.
а) Чему равен модуль силы, удерживающей брусок на наклонной плоскости, если сила направлена вдоль наклонной плоскости? Горизонтально?
б) Чему равна сила нормальной реакции, когда сила направлена горизонтально?

2. Условие покоя тела на наклонной плоскости

Будем теперь учитывать силу трения между телом и наклонной плоскостью.

Если тело покоится на наклонной плоскости, на него действуют сила тяжести m, сила нормальной реакции и сила трения покоя тр.пок (рис. 19.2).

Сила трения покоя направлена вдоль наклонной плоскости вверх: она препятствует соскальзыванию бруска. Следовательно, проекция этой силы на ось x, направленную вдоль наклонной плоскости вниз, отрицательна:

F тр.пок x = –F тр.пок

8. Объясните, почему справедливы следующие уравнения:


9. На наклонной плоскости с углом наклона α покоится брусок массой m. Коэффициент трения между бруском и плоскостью равен μ. Чему равна действующая на брусок сила трения? Есть ли в условии лишние данные?

10. Объясните, почему условие покоя тела на наклонной плоскости выражается неравенством

Подсказка. Воспользуйтесь тем, что сила трения покоя удовлетворяет неравенству F тр.пок ≤ μN.

Последнее неравенство можно использовать для измерения коэффициента трения: угол наклона плоскости плавно увеличивают, пока тело не начинает скользить по ней (см. лабораторную работу 4).

11.Лежащий на доске брусок начал скользить по доске, когда ее угол наклона к горизонту составил 20º. Чему равен коэффициент трения между бруском и доской?

12. Кирпич массой 2,5 кг лежит на доске длиной 2 м. Коэффициент трения между кирпичом и доской равен 0,4.
а) На какую максимальную высоту можно поднять один конец доски, чтобы кирпич не сдвинулся?
б) Чему будет равна при этом действующая на кирпич сила трения?

Сила трения покоя, действующая на тело, находящееся на наклонной плоскости, не обязательно направлена вдоль плоскости вверх. Она может быть направлена и вниз вдоль плоскости!

13. Брусок массой m находится на наклонной плоскости с углом наклона α. Коэффициент трения между бруском и плоскостью равен μ, причем и μ < tg α. Какую силу надо приложить к бруску вдоль наклонной плоскости, чтобы сдвинуть его вдоль наклонной плоскости:
а) вниз? б) вверх?

3. Движение тела по наклонной плоскости с учетом трения

Пусть теперь тело скользит по наклонной плоскости вниз (рис. 19.3). При этом на него действует сила трения скольжения, направленная противоположно скорости тела, то есть вдоль наклонной плоскости вверх.

? 15. Изобразите на чертеже в тетради силы, действующие на тело, и объясните, почему справедливы следующие уравнения:

16. Чему равна проекция ускорения тела на ось x?

17. Брусок скользит по наклонной плоскости вниз. Коэффициент трения между бруском и плоскостью равен 0,5. Как изменяется со временем скорость бруска, если угол наклона плоскости равен:
а) 20º? б) 30º? в) 45º? г) 60º?

18. Брусок начинает скользить по доске, когда ее наклоняют на угол 20º к горизонту. Чему ранен коэффициент трения между бруском и доской? С каким по величине и направлению ускорением будет скользить брусок вниз по доске, наклоненной на угол 30º? 15º?

Пусть теперь начальная скорость тела направлена вверх (рис. 19.4).

19. Изобразите на чертеже в тетради силы, действующие на тело, и объясните, почему справедливы следующие уравнения:


20. Чему равна проекция ускорения тела на ось x?

21. Брусок начинает скользить по доске, когда ее наклоняют на угол 20º к горизонту. Брусок толкнули вверх по доске. С каким ускорением он будет двигаться, если доска наклонена на угол: а) 30º? б) 15º? В каком из этих случаев брусок остановится в верхней точке?

22.Шайбу толкнули вверх по наклонной плоскости с начальной скоростью v 0 . Угол наклона плоскости α, коэффициент трения между шайбой и плоскостью μ. Спустя некоторое время шайба вернулась в начальное положение.
а) Сколько времени двигалась шайба вверх до остановки?
б) Какой путь прошла шайба до остановки?
в) Сколько времени после этого шайба возвращалась в начальное положение?

23. После толчка брусок двигался в течение 2 с вверх по наклонной плоскости и затем в течение 3 с вниз до возвращения в начальное положение. Угол наклона плоскости 45º.
а) Во сколько раз модуль ускорения бруска при движении вверх больше, чем при движении вниз?
б) Чему равен коэффициент трения между бруском и плоскостью?

Дополнительные вопросы и задания

24. Брусок соскальзывает без начальной скорости с гладкой наклонной плоскости высотой h (рис. 19.5). Угол наклона плоскости равен α. Какова скорость бруска в конце спуска? Есть ли здесь лишние данные?

25. (Задача Галилея) В вертикальном диске радиуса R просверлен прямолинейный гладкий желоб (рис. 19.6). Чему равно время соскальзывания бруска вдоль всего желоба из состояния покоя? Угол наклона желоба α, в начальный момент брусок покоится.

26. По гладкой наклонной плоскости с углом наклона α скатывается тележка. На тележке установлен штатив, на котором на нити подвешен груз. Сделайте чертеж, изобразите силы, действующие на груз. Под каким углом к вертикали расположена нить, когда груз покоится относительно тележки?

27. Брусок находится на вершине наклонной плоскости длиной 2 м и высотой 50 см. Коэффициент трения между бруском и плоскостью 0,3.
а) С каким по модулю ускорением будет двигаться брусок, если толкнуть его вниз вдоль плоскости?
б) Какую скорость надо сообщить бруску, чтобы он достиг основания плоскости?

28. Тело массой 2 кг находится на наклонной плоскости. Коэффициент трения между телом и плоскостью 0,4.
а) При каком угле наклона плоскости достигается наибольшее возможное значение силы трения?
б) Чему равно наибольшее значение силы трения?
в) Постройте примерный график зависимости силы трения от угла наклона плоскости.
Подсказка. Если tg α ≤ μ, на тело действует сила трения покоя, а если tg α > μ – сила трения скольжения.

На поверхности Земли сила тяжести (гравитация ) постоянна и равна произведению массы падающего тела на ускорение свободного падения: F g = mg

Следует заметить, что ускорение свободного падения величина постоянная: g=9,8 м/с 2 , и направлена к центру Земли. Исходя из этого можно сказать, что тела с разной массой будут падать на Землю одинаково быстро. Как же так? Если бросить с одинаковой высоты кусочек ваты и кирпич, то последний проделает свой путь до земли быстрее. Не забывайте о сопротивлении воздуха! Для ваты оно будет существенным, поскольку ее плотность очень мала. В безвоздушном пространстве кирпич и вата упадут одновременно.

Шар движется по наклонной плоскости длиной 10 метров, угол наклона плоскости 30°. Какова будет скорость шара в конце плоскости?

На шар действует только сила тяжести F g , направленная вниз перпендикулярно к основанию плоскости. Под действием этой силы (составляющей, направленной вдоль поверхности плоскости) шар будет двигаться. Чему будет равна составляющая силы тяжести, действующей вдоль наклонной плоскости?

Для определения составляющей необходимо знать угол между вектором силы F g и наклонной плоскостью.

Определить угол довольно просто:

  • сумма углов любого треугольника равна 180°;
  • угол между вектором силы F g и основанием наклонной плоскости равен 90°;
  • угол между наклонной плоскостью и ее основанием равен α

Исходя из вышесказанного, искомый угол будет равен: 180° - 90° - α = 90° - α

Из тригонометрии:

F g накл = F g ·cos(90°-α)

Sinα = cos(90°-α)

F g накл = F g ·sinα

Это действительно так:

  • при α=90° (вертикальная плоскость) F g накл = F g
  • при α=0° (горизонтальная плоскость) F g накл = 0

Определим ускорение шара из известной формулы:

F g ·sinα = m·a

A = F g ·sinα/m

A = m·g·sinα/m = g·sinα

Ускорение шара вдоль наклонной плоскости не зависит от массы шара, а только от угла наклона плоскости.

Определяем скорость шара в конце плоскости:

V 1 2 - V 0 2 = 2·a·s

(V 0 =0) - шар начинает движение с места

V 1 2 = √2·a·s

V = 2·g·sinα·S = √2·9,8·0,5·10 = √98 = 10 м/с

Обратите внимание на формулу! Скорость тела в конце наклонной плоскости будет зависеть только от угла наклона плоскости и ее длины.

В нашем случае скорость 10 м/с в конце плоскости будет иметь и бильярдный шар, и легковой автомобиль, и самосвал, и школьник на санках. Конечно же, трение мы не учитываем.